Skip to main content
Log in

Electron–Hole Dimers in the Parent Phase of Quasi–2D Cuprates

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The key feature of parent cuprates of the La2CuO4 type, in addition to their high ionic polarizability and closeness to polarization catastrophe, is identified as their instability against charge transfer that is accompanied by the formation of a system of metastable dipole-active Mott–Hubbard excitons, i.e., electron–hole (EH) dimers. This feature determines the behavior of cuprates upon nonisovalent substitution. Within the simplest model equivalent to a system of composite bosons, nonisovalent substitution shifts the phase equilibrium toward condensation of EH dimers and the formation of inhomogeneous EH liquid. To describe the electronic state of doped cuprates effectively, we propose to use the pseudospin S = 1 formalism. It enables us to treat cardinally new charged states such as Anderson’s RVB phases. Recombination of EH dimers at a critically low energy of local and nonlocal correlations drives the system into the state of a Fermi liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. Reagor, E. Ahrens, S. W. Cheong, A. Migliori, and Z. Fisk, Phys. Rev. Lett. 62, 2048 (1989).

    Article  ADS  Google Scholar 

  2. B. P. P. Mallett, T. Wolf, E. Gilioli, F. Licci, G. V. M. Williams, A. B. Kaiser, N. W. Ashcroft, N. Suresh, and J. L. Tallon, Phys. Rev. Lett. 111, 237001 (2013).

    Article  ADS  Google Scholar 

  3. A. S. Moskvin, Phys. Rev. B 84, 075116 (2011).

    Article  ADS  Google Scholar 

  4. A. S. Moskvin, Phys. Solid State 61, 693 (2019).

    Article  ADS  Google Scholar 

  5. S. Ono, S. Komiya, and Y. Ando, Phys. Rev. B 75, 024515 (2007).

    Article  ADS  Google Scholar 

  6. M. Ikeda, M. Takizawa, T. Yoshida, A. Fujimori, K. Segawa, and Y. Ando, Phys. Rev. B 82, 020503(R) (2010).

  7. M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Mod. Phys. 70, 897 (1998);

    Article  ADS  Google Scholar 

  8. M. Grüninger, J. Münzel, A. Gaymann, A. Zibold, H. P. Geserich, and T. Kopp, Europhys. Lett. 35, 55 (1996).

    Article  ADS  Google Scholar 

  9. J. M. Ginder, M. G. Roe, Y. Song, R. P. McCall, J. R. Gaines, E. Ehrenfreund, and A. J. Epstein, Phys. Rev. B 37, 7506 (1988).

    Article  ADS  Google Scholar 

  10. Y. H. Kim, S.-W. Cheong, and Z. Fisk, Phys. Rev. Lett. 67, 2227 (1991).

    Article  ADS  Google Scholar 

  11. Y. Ando, Y. Kurita, S. Komiya, S. Ono, and K. Segawa, Phys. Rev. Lett. 92, 197001 (2004).

    Article  ADS  Google Scholar 

  12. L. P. Gorkov and G. B. Teitelbaum, Phys. Rev. Lett. 97, 247003 (2006);

    Article  ADS  Google Scholar 

  13. J. Phys.: Conf. Ser. 108, 12009 (2008).

  14. T. Honma and P. H. Hor, Phys. Rev. B 77, 184520 (2008).

    Article  ADS  Google Scholar 

  15. A. S. Moskvin, J. Phys.: Conf. Ser. 592, 012076 (2015);

    Google Scholar 

  16. J. Exp. Theor. Phys. 121, 477 (2015).

  17. P. W. Anderson, Science (Washington, DC, U. S.) 235, 1196 (1987).

    Article  ADS  Google Scholar 

  18. D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).

    Article  ADS  Google Scholar 

  19. D. Wulferding, M. Shay, G. Drachuck, R. Ofer, G. Bazalitsky, Z. Salman, P. Lemmens, and A. Keren, Phys. Rev. B 90, 104511 (2014).

    Article  ADS  Google Scholar 

  20. A. S. Moskvin and Yu. D. Panov, J. Supercond. Nov. Magn. 32, 61 (2019).

    Article  Google Scholar 

Download references

Funding

The work was supported within Program 211 of the Russian Government, agreement no. 02.A03.21.0006, by the Russian Ministry for Education and Science (project nos. 2277 and 5719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Moskvin.

Ethics declarations

The author has no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvin, A.S., Panov, Y.D. Electron–Hole Dimers in the Parent Phase of Quasi–2D Cuprates. Phys. Solid State 61, 1553–1558 (2019). https://doi.org/10.1134/S1063783419090178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419090178

Keywords:

Navigation