Skip to main content
Log in

One- and Two-Qubit Gates: Rabi Technique and Single Unipolar Pulses

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Methods for controlling states of interacting superconducting flux qubits using power-efficient devices of fast single-quantum logic (Josephson nonlinearity cavities) are studied. One- and two-qubit quantum logical operations performed within the conventional control technique using Rabi pulses and using picosecond single unipolar magnetic field pulses are comparatively analyzed. It is shown that all main operations can be implemented with an accuracy of better than 97% due to optimization of the shape and parameters of unipolar control pulses (associated with, e.g., propagation of fluxons in transmission lines). The efficiency of the developed technique for programming a two-qubit quantum processor implementing the simplest Deutsch–Jozsa algorithm is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Clarke and F. K. Wilhelm, Nature (London, U.K.) 453, 1031 (2008).

    Article  ADS  Google Scholar 

  2. G. Wendin, Rep. Prog. Phys. 80, 106001 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  3. C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy, R. Barends, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, B. Foxen, R. Graff, et al., Science (Washington, DC, U. S.) 360, 195 (2018).

    Article  ADS  Google Scholar 

  4. M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G. Prawiroatmodjo, M. Scheer, N. Alidoust, E. A. Sete, N. Didier, M. P. da Silva, E. Acala, J. Angeles, A. Bestwick, M. Block, B. Bloom, et al., Sci. Adv. 4, eaao3603 (2018).

  5. J. A. Schreier, A. A. Houck, Jens Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. B 77, 180502(R) (2008).

  6. P. V. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett, R. Barends, K. Arya, B. Chiaro, Yu. Chen, A. Dunsworth, A. Fowler, B. Foxen, C. Gidney, M. Giustina, et al., Phys. Rev. Lett. 121, 090502 (2018).

    Article  ADS  Google Scholar 

  7. I. Rabi, Phys. Rev. 29, 174 (1927).

    Article  ADS  Google Scholar 

  8. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ., Cambridge, 1997).

    Book  Google Scholar 

  9. T. Yamamoto, Y. A. Pashkin, O. Astfiev, and Y. Nakamura, Nature (London, U.K.) 425, 941 (2003).

    Article  ADS  Google Scholar 

  10. T. Hime, P. A. Reichardt, B. L. T. Plourde, T. L. Robertson, C.-E. Wu, A. V. Ustinov, and J. Clarke, Science (Washington, DC, U. S.) 314, 1427 (2006).

    Article  ADS  Google Scholar 

  11. J. H. Plantenberg, P. C. deGroot, C. J. P. M. Harmans, and J. E. Mooij, Nature (London, U.K.) 447, 836 (2007).

    Article  ADS  Google Scholar 

  12. A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and J. S. Tsai, Science (Washington, DC, U. S.) 316, 723 (2007).

    Article  ADS  Google Scholar 

  13. E. Lucero, M. Hofheinz, M. Ansmann, R. C. Bialczak, N. Katz, M. Neeley, A. D. O’Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Phys. Rev. Lett. 100, 247001 (2008).

    Article  ADS  Google Scholar 

  14. J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S. Bishop, A. A. Houck, B. R. Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 102, 090502 (2009).

    Article  ADS  Google Scholar 

  15. A. Fedorov, A. Shnirman, G. Schoen, and A. Kidiyarova-Shevchenko, Phys. Rev. B 75, 224504 (2007).

    Article  ADS  Google Scholar 

  16. I. I. Soloviev, N. V. Klenov, A. L. Pankratov, E. Il’ichev, and L. S. Kuzmin, Phys. Rev. E 87, 060901(R) (2013).

  17. I. I. Soloviev, N. V. Klenov, S. V. Bakurskiy, A. L. Pankratov, and L. S. Kuzmin, Appl. Phys. Lett. 105, 202602 (2014).

    Article  Google Scholar 

  18. Q. Deng and D. V. Averin, J. Exp. Theor. Phys. 119, 1152 (2014).

    Article  ADS  Google Scholar 

  19. I. I. Soloviev, N. V. Klenov, A. L. Pankratov, L. S. Revin, E. Il’ichev, and L. S. Kuzmin, Phys. Rev. B 92, 014516 (2015).

    Article  ADS  Google Scholar 

  20. P. J. Liebermann and F. K. Wilhelm, Phys. Rev. Appl. 6, 024022 (2016).

    Article  ADS  Google Scholar 

  21. R. McDermott, M. G. Vavilov, B. L. T. Plourde, F. K. Wilhelm, P. J. Liebermann, O. A. Mukhanov, and T. A. Ohki, Quantum Sci. Technol. 3, 024004 (2018).

    Article  ADS  Google Scholar 

  22. N. V. Klenov, A. V. Kuznetsov, I. I. Soloviev, S. V. Bakurski, and O. V. Tikhonova, Beilstein J. Nanotechnol. 6, 1946 (2015).

    Article  Google Scholar 

  23. N. V. Klenov, A. V. Kuznetsov, I. I. Soloviev, S. V. Bakurskiy, M. V. Denisenko, and A. M. Satanin, Low Temp. Phys. 43, 789 (2017).

    Article  ADS  Google Scholar 

  24. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  25. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, Nature (London, U.K.) 414, 883 (2001).

    Article  ADS  Google Scholar 

  26. S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, Nature (London, U.K.) 421, 48 (2003).

    Article  ADS  Google Scholar 

  27. L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature (London, U.K.) 460, 240 (2009).

    Article  ADS  Google Scholar 

  28. T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward, P. Scarlino, M. Veldhorst, D. E. Savage, M. G. Lagally, MarkFriesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, Nature (London, U.K.) 555, 633 (2018).

    Article  ADS  Google Scholar 

  29. M. V. Denisenko, N. V. Klenov, and A. M. Satanin, J. Exp. Theor. Phys. 128, 227 (2019).

    Article  ADS  Google Scholar 

  30. M. Grajcar, A. Izmalkov, S. H. W. van der Ploeg, S. Linzen, E. Il’ichev, Th. Wagner, U. Hübner, H.‑G. Meyer, A. M. van den Brink, S. Uchaikin, and A. M. Zagoskin, Phys. Rev. B 72, 020503(R) (2005).

  31. N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, Supercond. Sci. Technol. 26, 035010 (2013).

    Article  ADS  Google Scholar 

  32. I. I. Soloviev, N. V. Klenov, S. V. Bakurskiy, M. Yu. Kupriyanov, A. L. Gudkov, and A. S. Sidorenko, Beilstein J. Nanotech. 8, 2689 (2017).

    Google Scholar 

  33. A. E. Schegolev, N. V. Klenov, I. I. Soloviev, and M. V. Tereshonok, Beilstein J. Nanotechnol. 7, 1397 (2016).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 18-72-00158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Bastrakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastrakova, M.V., Klenov, N.V. & Satanin, A.M. One- and Two-Qubit Gates: Rabi Technique and Single Unipolar Pulses. Phys. Solid State 61, 1515–1522 (2019). https://doi.org/10.1134/S106378341909004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341909004X

Keywords:

Navigation