Skip to main content
Log in

Techniques for Polytypic Transformations in Silicon Carbide

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Two main polytype transformations in silicon carbide, namely, 2H → 6H and 3C → 6H, have been studied by ab initio methods. It has been shown that the intermediate phases with trigonal symmetry P3m1 and monoclinic symmetry Cm make it much easier to move the close-packed layers in such transitions by breaking them up into separate stages. It has been found that these two polytype transformations proceed in completely different ways. The links being relocated noticeably tilted compared to their initial position at the transition 2H → 6H, which allows the compression of the SiC links in the plane (\(11\bar {2}0\)). The transition 3C → 6H is carried out through the formation of Si–Si and C–C auxiliary links, living for a short time and helping densely packed layers to swap places. As a result, the activation barrier of the transformation 2H → 6H (1.7 eV/atom) is significantly less than the activation barrier of the transformation 3C → 6H (3.6 eV/atom), which means that the second transition should occur at the temperatures by 750–800°C higher than the first one. The energy profiles of this polytypic transformations, as well as the geometry of all intermediate and transition phases have been calculated. It has been shown that all the transition states have monoclinic symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. T. Sebastian and P. Krishna, Random, Non-Random and Periodic Faulting in Crystals (Taylor and Francis Group, Routledge, London, New York, 2014).

  2. J. Fan and P. K. Chu, Silicon Carbide Nanostructures. Fabrication, Structure, and Properties (Springer, Switzerland, 2014).

    Google Scholar 

  3. P. V. Bulat, A. A. Lebedev, and Yu. N. Makarov, Sci. Tech. J. Inform. Technol., Mech. Opt. 3 (91) (2014); https://openbooks.ifmo.ru/read_ntv/9619/9619.pdf.

  4. T. Tagai, S. Sueno, and R. Sadanaga, Mineralog. J. 6, 340 (1971).

    Google Scholar 

  5. N. W. Jepps and T. F. Page, Prog. Cryst. Growth Charact. 7, 259 (1983).

    Article  Google Scholar 

  6. H. N. Baumann, J. Electrochem. Soc. 99, 109 (1952).

    Article  Google Scholar 

  7. S. I. Vlaskina, G. N. Mishinova, V. I. Vlaskin, V. E. Ro-dionov, and G. S. Svechnikov, Semicond. Phys., Quantum Electron. Optoelectron. 14, 432 (2011).

    Article  Google Scholar 

  8. M. I. Sokhor, V. G. Kondakov, and L. I. Fel’dgun, Sov. Phys. Dokl. 12, 749 (1967).

    ADS  Google Scholar 

  9. A. A. Lebedev, S. Yu. Davydov, L. M. Sorokin, and L. V. Shakhov, Tech. Phys. Lett. 41, 1156 (2015).

    Article  ADS  Google Scholar 

  10. D. Pandey, S. Lele, and P. Krishna, Proc. R. Soc. London, Ser. A 369, 463 (1980).

    Article  ADS  Google Scholar 

  11. G. Henkelman, B. P. Uberuaga, and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  Google Scholar 

  12. K. J. Caspersen and E. A. Carter, Proc. Natl. Acad. Sci. (U.S.A.) 102, 6738 (2005).

    Article  ADS  Google Scholar 

  13. A. V. Osipov, J. Phys. D 28, 1670 (1995).

    Article  ADS  Google Scholar 

  14. A. V. Osipov, Thin Solid Films 261, 173 (1995).

    Article  ADS  Google Scholar 

  15. J. G. Lee, Computational Materials Science, An Introduction (CRC, Taylor and Francis Group, Roca Baton, 2017).

    Google Scholar 

  16. D. S. Sholl and J. A. Steckel, Density Functional Theory. A Practical Introduction (Wiley, Hoboken, 2009).

    Book  Google Scholar 

  17. J. Hafner, J. Comput. Chem. 29, 2044 (2008).

    Article  Google Scholar 

  18. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  19. P. Atkins and J. de Paula, Atkins’ Physical Chemistry (Oxford Univ. Press, Oxford, 2006).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was done using the equipment of the Unique stand (UNO) “Physics, chemistry, and mechanics of crystals and thin films,” FGUP IPMash RAS.

Funding

The work was supported by the Russian Foundation for Basic Research (grant no. 16-29-03149-ofi-m).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kukushkin.

Ethics declarations

The authors state that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, S.A., Osipov, A.V. Techniques for Polytypic Transformations in Silicon Carbide. Phys. Solid State 61, 1389–1393 (2019). https://doi.org/10.1134/S106378341908016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341908016X

Keywords:

Navigation