Skip to main content
Log in

The Influence of Hydrogenation on the Structure, Magnetic and Magnetocaloric Properties of Tb–Dy–Co Alloys with a Laves Phase Structure

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A complex study of structure, phase composition, surface topology, magnetic, and magnetocaloric properties was performed for TbCo2 and Tb0.3Dy0.7Co2 compounds and for a Tb0.3Dy0.7Co2H0.5 hydride with a low hydrogen content. The hydrogenation was established to impact the structural features at the micro- and nanolevels, as well as the fundamental and functional properties. Introducing even a small amount of hydrogen in the crystal lattice of Tb0.3Dy0.7Co2 compound is found to cause an increase in both the Curie temperature and the magnetic moment at the cobalt atoms. The magnetic phase transition from the paramagnetic to the magnetically ordered state changes from the first (in Tb0.3Dy0.7Co2) to the second (in TbCo2 and Tb0.3Dy0.7Co2H0.5) order, leading to a noticeable decrease in the magnetocaloric effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. H. Duc and T. Goto, in Handbook on Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, Jr. and LeRoy Eyring (Elsevier, Amsterdam, 1999), Vol. 26.

  2. E. Gratz and A. S. Markosyan, J. Phys.: Condens. Matter 13, R385 (2001).

    ADS  Google Scholar 

  3. K. P. Belov, Magnetostriction Phenomena and Their Technical Applications (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  4. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications (Inst. of Physics, Bristol, 2003).

    Book  Google Scholar 

  5. I. S. Tereshina, J. Ćwik, E. A. Tereshina, G. Politova, G. Burkhanov, V. Chzhan, A. S. Ilyushin, M. Miller, A. Zaleski, K. Nenkov, and L. Schultz, IEEE Trans. Mag. 50, 2504604 (2014).

    Article  Google Scholar 

  6. V. B. Chzhan, I. S. Tereshina, A. Yu. Karpenkov, and E. A. Tereshina-Chitrova, Acta Mater. 154, 303 (2018).

    Article  Google Scholar 

  7. I. Tereshina, G. Politova, E. Tereshina, G. Burkhanov, O. Chistyakov, and S. Nikitin, J. Phys.: Conf. Ser. 266, 012077 (2011).

    Google Scholar 

  8. E. Bruck. J. Phys. D 38, R381 (2005).

    Article  ADS  Google Scholar 

  9. V. Franco, J. S. Blazquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramirez, and A. Conde, Prog. Mater. Sci. 93, 112 (2018).

    Article  Google Scholar 

  10. A. Kitanovski, J. Turek, U. Tomc, U. Plaznik, M. Ožbolt, and A. Poredoš, Magnetocaloric Energy Conversion: From Theory to Applications (Springer International, Cham, Switzerland, 2015).

    Book  Google Scholar 

  11. G. Wiesenger and G. Hilscher, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 2008), Vol. 17.

    Google Scholar 

  12. S. Nikitin, I. Tereshina, E. Tereshina, W. Suski, and H. Drulis, J. Alloys Compd. 451, 477 (2008).

    Article  Google Scholar 

  13. H. Fujii and H. Sun, Interstitially Modified Intermetallics of Rare Earth-Elements, Vol. 9 of Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 1995).

  14. E. A. Tereshina, H. Drulis, Y. Skourski, and I. Tereshina, Phys. Rev. B 87, 214425 (2013).

    Article  ADS  Google Scholar 

  15. N. V. Mushnikov, V. S. Gaviko, and T. Goto, Phys. Met. Metallogr. 100, 338 (2005).

    Google Scholar 

  16. S. A. Nikitin, I. S. Tereshina, N. Yu. Pankratov, and Yu. V. Skourski, Phys. Rev. B 63, 134420 (2001).

    Article  ADS  Google Scholar 

  17. D. P. Shoemaker and C. B. Shoemaker, J. Less-Common Met. 68, 43 (1979).

    Article  Google Scholar 

  18. T. De Saxce, Y. Berthier, and D. Fruchart, J. Less-Common Met. 107, 35 (1985).

    Article  Google Scholar 

  19. G. A. Politova, I. S. Tereshina, G. S. Burkhanov, O. D. Chistyakov, V. B. Chzhan, T. P. Kaminskaya, V. V. Popov, A. Zaleski, and V. I. Nizhankovskii, Phys. Solid State 53, 2028 (2011).

    Article  ADS  Google Scholar 

  20. G. S. Burkhanov, I. S. Tereshina, G. A. Politova, O. D. Chistyakov, G. Drulis, and A. Zaleski, Dokl. Phys. 56, 513 (2011).

    Article  ADS  Google Scholar 

  21. G. A. Politova, I. S. Tereshina, S. A. Nikitin, Yu. B. Patrikeev, T. G. Sochenkova, V. N. Verbetskii, A. A. Salamova, and M. V. Makarova, Phys. Solid State 47, 1909 (2005).

    Article  ADS  Google Scholar 

  22. S. A. Nikitin, I. S. Tereshina, V. N. Verbetsky, A. A. Salamova, K. P. Skokov, N. Yu. Pankratov, Yu. V. Skourski, N. V. Tristan, V. V. Zubenko, and I. V. Telegina, J. Alloys Compd. 322, 42 (2001).

    Article  Google Scholar 

  23. Scanning Microscopy for Nanotechnology: Techniques and Applications, Ed. by W. Zhou and Zh. L. Wang (Springer, New York, 2007).

    Google Scholar 

  24. I. V. Yaminskii, in Fundamentals of Atomic Force Microscopy, Ed. by I. V. Yaminskii and D. V. Bagrov (NOUDPO Inst. Inform. Tekhnol. AiTi, Moscow, 2011) [in Russian].

    Google Scholar 

  25. E. Burzo, P. Vlaic, D. P. Kozlenko, S. E. Kichanov, N. T. Dang, E. V. Lukin, and B. N. Savenko, J. Alloys Compd. 551, 702 (2013).

    Article  Google Scholar 

  26. M. Brouha and K. H. J. Buschow, J. Phys. F 3, 2218 (1973).

    Article  ADS  Google Scholar 

  27. E. A. Tereshina, S. Khmelevskyi, G. Politova, T. Kaminskaya, H. Drulis, and I. S. Tereshina, Sci. Rep. 6, 22553 (2016).

    Article  ADS  Google Scholar 

  28. E. A. Tereshina, H. Yoshida, A. V. Andreev, I. S. Tereshina, K. Koyama, and T. Kanomata, J. Phys. Soc. Jpn. 76 (Suppl. A), 82 (2007).

    Article  Google Scholar 

  29. A. S. Markosyan, Sov. Phys. Solid State 23, 965 (1981).

    Google Scholar 

  30. N. V. Mushnikov, N. K. Zajkov, M. I. Bartashevich, T. Goto, H. Aruga-Katori, M. Yamaguchi, and I. Yamamoto, J. Magn. Magn. Mater. 167, 229 (1997).

    Article  ADS  Google Scholar 

  31. P. Vajda, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, Jr. and LeRoy Eyring (North-Holland, Amsterdam, 1995), Vol. 20.

  32. G. S. Burkhanov, N. B. Kolchugina, E. A. Tereshina, I. S. Tereshina, G. A. Politova, V. B. Chzhan, D. Badurski, O. D. Chistyakov, M. Paukov, H. Drulis, and L. Havela, Appl. Phys. Lett. 104, 242402 (2014).

    Article  ADS  Google Scholar 

  33. I. Tereshina, G. Politova, E. Tereshina, S. Nikitin, G. Burkhanov, O. Chistyakov, and A. Karpenkov, J. Phys.: Conf. Ser. 200, 092012 (2010).

    Google Scholar 

  34. I. Tereshina, G. Politova, E. Tereshina, J. Cwik, S. Nikitin, O. Chistyakov, A. Karpenkov, D. Karpenkov, and T. Palewski, J. Phys.: Conf. Ser. 303, 012024 (2011).

    Google Scholar 

  35. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1979; Pergamon, Oxford, 1980).

  36. A. del Moral, Handbook of Magnetostriction and Magnetostrictive Materials (Del Moral, Univ. Zaragoza, Spain, 2008).

    Google Scholar 

  37. N. H. Duc, D. T. Kim Anh, and P. E. Brommer, Phys. B (Amsterdam, Neth.) 319, 1 (2002).

  38. J. Prokleska, J. Vejpravova, D. Vasylyev, S. Danis, and V. Sechovsky, J. Magn. Magn. Mater. 290–291, 676 (2005).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to H. Drulis for providing a hydrogenation of sample and to D. Gorbunov for help in the organization of measurements under high magnetic fields.

Funding

This work was supported by the Russian Science Foundation (project no. 18-13-00135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Tereshina.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tereshina, I.S., Kaminskaya, T.P., Chzhan, V.B. et al. The Influence of Hydrogenation on the Structure, Magnetic and Magnetocaloric Properties of Tb–Dy–Co Alloys with a Laves Phase Structure. Phys. Solid State 61, 1169–1175 (2019). https://doi.org/10.1134/S1063783419070278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419070278

Navigation