Skip to main content
Log in

Magnetic Phase Transitions to an Incommensurate Magnetic Structure in FeGe2 Compound

  • PHASE TRANSITIONS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A symmetry analysis of possible magnetic structures in an incommensurate magnetic phase in FeGe2 compound, resulted from phase transitions from the paramagnetic phase, was performed based on a phenomenological consideration. It is shown that two possible approaches to a such an analysis, the first of which uses the magnetic representation of the space group, and the second one is based on the expansion of the magnetic moment in basis functions of irreducible representations of the space group of the paramagnetic phase, yield the same results. Space group irreducible representations are determined, according to which the transition to an incommensurate structure can occur. The set of these representations appears identical in both approaches. Ginzburg–Landau functionals for analyzing the transitions according to these representations are written. A renormalization group analysis of the second-order phase transitions from the paramagnetic state to the incommensurate magnetic structure is performed. It is shown that a helical magnetic structure can arise in the incommensurate phase as a result of two second-order phase transitions at the transitions temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. A. Izyumov and E. Z. Kurmaev, High Temperature Superconductors on FeAc-Based Compounds (Regulyar. Khaotich. Dinamika, Moscow, Izhevsk, 2010) [in Russian].

    Book  Google Scholar 

  2. E. Kren and P. Sabo, Phys. Lett. 11, 215 (1964).

    Article  ADS  Google Scholar 

  3. L. M. Corliss, J. M. Hasting, W. Kunnmann, R. Tomas, and J. Zhuang, Phys. Rev. B 31, 4337 (1985).

    Article  ADS  Google Scholar 

  4. Yu. A. Dorofeev, A. Z. Men’shikov, G. A. Budrina, and V. N. Syromyatnikov, Fiz. Met. Metalloved. 63, 1110 (1987).

    Google Scholar 

  5. R. P. Krentsis, A. V. Mikhel’son, and P. V. Gel’d, Sov. Phys. Solid State 12, 1979 (1970).

    Google Scholar 

  6. K. B. Vlasov, E. V. Ustelemova, R. I. Zainullina, M. A. Milyaev, and S. V. Ustelemov, Sov. Phys. Solid State 32, 809 (1990).

    Google Scholar 

  7. P. D. Babu, P. K. Mishra, V. Dubc, R. Mishra, P. U. Sastry, and G. Ravikumar, AIP Conf. Proc. 1591, 1586 (2014).

    Article  ADS  Google Scholar 

  8. G. E. Gerchnev, A. A. Lyogenkaya, V. B. Pluzhnikov, and A. V. Fedorchenko, Low Temp. Phys. 40, 384 (2014).

    Article  ADS  Google Scholar 

  9. V. B. Pluzhnikov, D. Feder, and E. Fawcett, J. Magn. Magn. Mater. 27, 343 (1982).

    Article  ADS  Google Scholar 

  10. Yu. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutronography of Magnets (Atomizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  11. H. J. Wallaum, Z. Metallknd. 35, 218 (1943).

  12. J. B. Forsgth, C. E. Johnson, and P. J. Brown, Philos. Mag. 10, 713 (1964).

    Article  ADS  Google Scholar 

  13. O. V. Kovalev, Irreducible and Induced Representations and Co-Representations of Fedorov’s Groups (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  14. G. L. Bir and G. E. Pikus, Symmetry and Stain-Induced Effects in Semiconductors (Nauka, Moscow, 1972; Wiley, New York, 1975).

  15. O. V. Kovalev, Sov. Phys. Solid State 5, 2309 (1963).

    Google Scholar 

  16. I. E. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964).

    Google Scholar 

  17. C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids. Representation Theory for Point Groups and Space Groups (Clarendon, Oxford, 1972).

    MATH  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

  19. K. G. Wilson and M. Fisher, Phys. Rev. Lett. 28, 240 (1972).

    Article  ADS  Google Scholar 

  20. V. V. Men’shenin, J. Exp. Theor. Phys. 120, 1019 (2015).

    Article  ADS  Google Scholar 

  21. E. E. Gorodetskii and V. M. Zaprudskii, Sov. Phys. JETP 42, 515 (1975).

    ADS  Google Scholar 

  22. A. N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Frontiers in Physics (PIYaF, St. Petersburg, 1998; Chapman and Hall, CRC, Boca Raton, FL, 2004).

  23. C. de Dominicis and L. Peliti, Phys. Rev. B 18, 353 (1978).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed within the State contract (“Kvant” theme, no. АААА-А18-118020190095-4) and project no. 18-2-2-11 of the Ural Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Men’shenin.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shenin, V.V. Magnetic Phase Transitions to an Incommensurate Magnetic Structure in FeGe2 Compound. Phys. Solid State 61, 421–432 (2019). https://doi.org/10.1134/S1063783419030211

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419030211

Navigation