Skip to main content
Log in

Electrodynamic Characteristics of Solid Solutions Pb(Fe1 – xScx)2/3W1/3O3 in a Broad Spectral Range

  • DIELECTRICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The methods of broadband dielectric spectroscopy are used to study the effect of substitution of Fe3+ by Sc3+ in Pb(Fe1 – xScx)2/3W1/3O3 solid solutions of perovskite family on the dielectric response function in the frequency range from 120 Hz up to 100 THz (4 × 10–9–3 × 103 cm–1). The experimental data are analyzed in the framework of multiparameter dispersion models. The evolution of the dispersion parameters of absorption bands depending on the degree of cation substitution in the B position of perovskite basis of ABO3 is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  ADS  Google Scholar 

  2. S. Coh, T. Heeg, J. H. Haeni, M. D. Biegalski, J. Lettieri, L. F. Edge, K. E. O’Brien, M. Bernhagen, P. Reiche, R. Uecker, S. Trolier-McKinstry, D. G. Schlom, and D. Vanderbilt, Phys. Rev. B 82, 064101 (2010).

    Article  ADS  Google Scholar 

  3. G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik, R. E. Pasynkov, and A. I. Sokolov, Ferroelectrics and Related Materials. Ferroelectricity and Related Phenomena, Ed. G. W. Taylor (Gordon and Breach, New York, 1984), Vol. 3.

    Google Scholar 

  4. V. V. Lemanov, Phys. Solid State 39, 1468 (1997).

    Article  ADS  Google Scholar 

  5. S. A. Ivanov, A. A. Bush, A. I. Stash, K. E. Kamentsev, V. Ya. Shkuratov, Ya. O. Kvashnin, C. Autieri, I. di Marko, B. Sanyal, O. Eriksson, P. Nordblad, and R. Mathieu, Inorg. Chem. 55, 2791 (2016).

    Article  Google Scholar 

  6. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).

    Article  ADS  Google Scholar 

  7. S. A. Ivanov, S.-G. Eriksson, R. Tellgren, and H. Rundlöf, Mater. Res. Bull. 39, 2317 (2004).

    Article  Google Scholar 

  8. G. A. Smolenskii, A. I. Agranovskaya, and V. A. Isupov, Sov. Phys. Solid State 1, 907 (1959).

    Google Scholar 

  9. G. A. Smolenskii, V. A. Isupov, N. N. Krainik, and A. I. Agranovskaya, Izv. Akad. Nauk, Ser. Fiz. 25, 1333 (1961).

    Google Scholar 

  10. V. A. Bokov, I. E. Myl’nikova, and G. A. Smolenskii, Sov. Phys. JETP 15, 447 (1962).

    Google Scholar 

  11. B. Fraygola, W. J. Nascimento, A. A. Coelho, D. Garcia, and J. A. Eiras, Phys. Status Solidi A 210, 1856 (2013).

    Article  Google Scholar 

  12. A. A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006).

    Article  ADS  Google Scholar 

  13. S. A. Ivanov, A. A. Bush, C. Ritter, M. A. Behtin, V. M. Cherepanov, C. Autieri, Y. O. Kvashnin, I. di Marco, B. Sanyal, O. Eriksson, P. Anil Kumar, P. Nordblad, and R. Mathieu, Mater. Chem. Phys. 187, 218 (2017).

    Article  Google Scholar 

  14. B. Fraygola and J. A. Eiras, Mater. Res. 17, 1594 (2014).

    Article  Google Scholar 

  15. A. F. Koroleva, A. A. Bush, K. E. Kamentsev, V. Ya. Shkuratov, S. A. Ivanov, V. M. Cherepanov, and S. Shafeie, Inorg. Mater. 54, 288 (2018).

    Article  Google Scholar 

  16. P. Juhas, I. Grinberg, A. M. Rappe, W. Dmowski, T. Egami, and P. K. Davies, Phys. Rev. B 69, 214101 (2004).

    Article  ADS  Google Scholar 

  17. R. Wongmaneerung, X. Tan, R. W. McCallum, S. Ananta, and R. Yimnirun, Appl. Phys. Lett. 90, 242905 (2007).

    Article  ADS  Google Scholar 

  18. R. Tan, R. Wongmaneerung, and R. W. McCallum, J. Appl. Phys. 102, 104114 (2007).

    Article  ADS  Google Scholar 

  19. L. E. Cross, Ferroelectrics 76, 241 (1987).

    Article  Google Scholar 

  20. G. A. Samara, J. Phys.: Condens. Matter 15, R367 (2003).

    ADS  Google Scholar 

  21. R. A. Cowley, S. N. Gvasaliya, S. G. Lushnikov, B. Roessli, and G. M. Rotaru, Adv. Phys. 60, 229 (2011).

    Article  ADS  Google Scholar 

  22. S. Kamba, J. Petzelt, J. Banis, R. Mizaras, J. Grigas, J. Pokorny, J. Endal, A. Brilingas, G. Komandin, A. Pronin, and M. Kosec, Ferroelectrics 223, 247 (1999).

    Article  Google Scholar 

  23. S. Kamba, V. Bovtun, J. Petzelt, I. Rychetsky, R. Mizaras, A. Brilingas, J. Banys, J. Grigas, and M. Kosec, J. Phys.: Condens. Matter 12, 497 (2000).

    ADS  Google Scholar 

  24. G. A. Komandin, O. E. Porodinkov, A. A. Bush, A. F. Koroleva, I. E. Spektor, S. V. Chuchupal, D. S. Seregin, and L. D. Iskhakova, Phys. Solid State 59, 2365 (2017).

    Article  ADS  Google Scholar 

  25. V. Kozlov and A. Volkov, Top. Appl. Phys. 74, 51 (1998).

    Article  Google Scholar 

  26. G. A. Komandin, S. V. Chuchupal, S. P. Lebedev, Y. G. Goncharov, A. F. Korolev, O. E. Porodinkov, I. E. Spektor, and A. A. Volkov, IEEE Trans. Terahertz Sci. Technol. 3, 440 (2013).

    Article  ADS  Google Scholar 

  27. A. S. Barker, Jr. and J. J. Hopfield, Phys. Rev. A 135, 1732 (1964).

    Article  ADS  Google Scholar 

  28. J. Petzelt, G. V. Kozlov, and A. A. Volkov, Ferroelectrics 73, 101 (1987).

    Article  Google Scholar 

  29. W. Zhong, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett. 72, 3618 (1994).

    Article  ADS  Google Scholar 

  30. A. S. Barker, Jr., Phys. Rev. B 12, 4071 (1975).

    Article  ADS  Google Scholar 

  31. F. Gervais and B. Piriou, J. Phys. C 7, 2374 (1974).

    Article  ADS  Google Scholar 

  32. I. M. Reaney, J. Petzelt, V. V. Voitsekhovskii, F. Chu, and N. Setter, J. Appl. Phys. 76, 2086 (1994).

    Article  ADS  Google Scholar 

  33. S. A. Prosandeev, E. Cockayne, B. P. Burton, S. Kam-ba, J. Petzelt, Yu. Yuzyuk, R. S. Katiyar, and S. B. Vakhrushev, Phys. Rev. B 70, 134110 (2004).

    Article  ADS  Google Scholar 

  34. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1996).

    Google Scholar 

  35. J.-F. Baumard and F. Gervais, Phys. Rev. B 15, 2316 (1977).

    Article  ADS  Google Scholar 

  36. E. A. Vinogradov, B. N. Mavrin, N. N. Novikova, and V. A. Yakovlev, Phys. Usp. 52, 290 (2009).

    ADS  Google Scholar 

  37. G. Komandin, O. Porodinkov, I. Spektor, S. Chuchupal, and A. Volkov, Ferroelectics 463, 1 (2014).

    Article  Google Scholar 

  38. G. V. Kozlov, A. M. Prokhorov, and A. A. Volkov, in Problems in Solid-State Physics, Ed. by A. M. Pro-khorov and A. S. Prokhorov (Mir, Moscow, 1984), p. 19.

  39. B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, Int. J. Infrared Millim. Waves 26, 1217 (2005).

    Article  ADS  Google Scholar 

  40. B. P. Gorshunov, A. A. Volkov, A. S. Prokhorov, and I. E. Spektor, Phys. Solid State 50, 2001 (2008).

    Article  ADS  Google Scholar 

  41. J. Petzelt, R. Zurmühlen, A. Bell, S. Kamba, G. V. Kozlov, A. A. Volkov, and N. Setter, Ferroelectrics 133, 205 (1992).

    Article  Google Scholar 

  42. J. Hlinka, J. Petzelt, S. Kamba, D. Noujni, and T. Ostapchuk, Phase Trans. 79, 41 (2006).

    Article  Google Scholar 

  43. V. Bovtun, S. Kamba, A. Pashkin, M. Savinov, P. Samoukhina, J. Petzelt, I. P. Bykov, and M. D. Glinchuk, Ferroelectrics 298, 23 (2004).

    Article  Google Scholar 

  44. J. Grigas, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials, Vol. 9 of Ferroelectricity and Related Phenomena (Gordon and Breach, Amsterdam, 1996).

  45. S. Kamba, V. Porokhonskyy, A. Pashkin, V. Bovtun, J. Petzelt, J. C. Nino, S. Trolier-McKinstry, M. T. Lanagan, and C. A. Randall, Phys. Rev. B 66, 054106 (2002).

    Article  ADS  Google Scholar 

  46. A. K. Tagantsev, Phys. Rev. Lett. 72, 1100 (1994).

    Article  ADS  Google Scholar 

  47. A. A. Bokov and Z.-G. Ye, Phys. Rev. B 65, 144112 (2002).

    Article  ADS  Google Scholar 

  48. A. I. Ritus, A. V. Pronin, A. A. Volkov, P. Lunkenheimer, A. Loidl, A. S. Shcheulin, and A. I. Ryskin, Phys. Rev. B 65, 165209 (2002).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Russian Foundation for Basic Research, grant no. 16-02-00223; synthesis of ceramics and measurements in the low-frequency range were funded by the project 3.1099.2017/PCh of the state assignment of the M-inistry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Porodinkov.

Additional information

Translated by V. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komandin, G.A., Porodinkov, O.E., Chuchupal, S.V. et al. Electrodynamic Characteristics of Solid Solutions Pb(Fe1 – xScx)2/3W1/3O3 in a Broad Spectral Range. Phys. Solid State 60, 2440–2449 (2018). https://doi.org/10.1134/S1063783418120168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418120168

Navigation