Skip to main content
Log in

Mechanism of Optical Charge Exchange of Magnetic Centers in BSO : Fe

  • Impurity Centers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

High-resistance photosensitive crystals of Bi12SiO20 (BSO) doped with iron ions were studied. X-ray diffraction analysis reveals the compression of a unit cell in a BSO : Fe crystal with increasing impurity concentration. Electron paramagnetic resonance demonstrates a decrease in the intensity of the EPR signal when the BSO: Fe crystal is exposed to light that generates photocarriers. It is found that the characteristic time of the EPR signal decrease is close to the value of the Maxwellian relaxation time measured with the help of the longitudinal electrooptical effect. A physical model of the mechanism of optical charge exchange of magnetic iron centers is discussed, based on the statement that the nature of the crystal bonds of the iron ion with ligands without structural modification of the crystal lattice changes during the photogeneration of carriers. A physical model is proposed, according to which a trivalent Fe3+ ion transforms into a divalent state of Fe2+ with a change in the total spin from 5/2 to 2. The compression of the unit cell with increasing iron ion concentration in the framework of the model under discussion is due to the transformation of atomic orbitals upon replacement of silicon ions by iron ions. The transformation process affects the cells unoccupied by iron, which is proved by the absence of a bifurcation of X-ray reflections and indicates the long-range nature of the intracrystalline interactions in sillenites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook on Acoustical Crystals, Ed. M. P. Shaskol’skaya (Nauka, Moscow, 1982) [in Russian].

  2. V. M. Skorikov, Y. F. Kargin, A. V. Egorysheva, V. V. Volkov, and M. Gospodinov, Inorg. Mater. 41, 24 (2005).

    Article  Google Scholar 

  3. A. Bohm, Quantum Mechanics: Foundations and Applications (Springer, New York, Tokyo, 1986).

    Book  MATH  Google Scholar 

  4. N. K. Porwal, R. M. Kadam, Y. Babu, M. D. Sastry, M. D. Aggarwal, and P. Venkatesvarlu, Pramana-J. Phys. 48, 929 (1997).

    Article  ADS  Google Scholar 

  5. M. G. Janiand and L. E. Halliburton, J. Appl. Phys. 64, 2022 (1988).

    Article  ADS  Google Scholar 

  6. H. J. Bardelebe, J. Phys. D 16, 29 (1983).

    Article  ADS  Google Scholar 

  7. V. M. Kapralova, A. V. Il’inskii, A. R. Kastro, L. A. Nabiullina, and E. B. Shadrin, NTVS PbGPU, Fiz.-Mat. Nauki, No. 4 (253), 22 (2016).

    Google Scholar 

  8. L. A. Blyummenfel’d, Soros. Obrazov. Zh. 4, 33 (1998).

    Google Scholar 

  9. A. V. Il’inskii and M. B. Mel’nikov, Avtometriya, No. 4, 79 (1991).

    Google Scholar 

  10. B. F. Ormont, Introduction to Physical Chemistry and Crystal Chemistry of Semiconductors (Vysshaya Shkola, Moscow, 1973) [in Russian].

    Google Scholar 

  11. A. S. Davydov, Quantum Mechanics (BKhV-Peterburg, St. Petersburg, 2011) [in Russian].

    MATH  Google Scholar 

  12. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  13. P. S. Kireev, Semiconductor Physics (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  14. A. S. Moskvin and A. V. Zenkov, Solid State Commun. 80, 739 (1991).

    Article  ADS  Google Scholar 

  15. F. L. Sheikha, N. Dalal, H. Moussab, Z. Ahmed, C. Luigi, and T. Kazuhiro, J. Chem. Phys. 144, 134702 (2016).

    Article  Google Scholar 

  16. The Chemist’s Handbook (Nauka, Moscow, 1985).

  17. N. M. Emanuel’ and M. G. Kuz’min, Experimental Methods of Chemical Kinetics (Mosk. Gos. Univ., Moscow, 1985) [in Russian].

    Google Scholar 

  18. B. F. Minaev and L. B. Yashchuk, Opt. Spectrosc. 95, 553 (2003).

    Article  ADS  Google Scholar 

  19. I. Goloshchapov, L. B. Kuleva, E. I. Leonov, and V. M. Orlov, Izv. Akad. Nauk SSSR, Ser.: Neorg. Mater. 24, 868 (1988).

    Google Scholar 

  20. S. Wittekoek, T. J. A. Popma, J. M. Robertson, and P. F. Bongcrs, Phys. Rev. B 12, 2777 (1975).

    Article  ADS  Google Scholar 

  21. G. V. Pavlinsky, Fundamentals of the X-Ray Physics (Fizmatlit, Moscow, 2007; Cambridge Int. Sci., Cambridge, UK, 2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Shadrin.

Additional information

Original Russian Text © A.V. Il’inskii, V.M. Kapralova, R.A. Kastro, L.A. Nabiullina, V.M. Stozharov, E.B. Shadrin, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 9, pp. 1785–1792.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’inskii, A.V., Kapralova, V.M., Kastro, R.A. et al. Mechanism of Optical Charge Exchange of Magnetic Centers in BSO : Fe. Phys. Solid State 60, 1831–1838 (2018). https://doi.org/10.1134/S1063783418090123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418090123

Navigation