Skip to main content
Log in

Anomalies in the Magnetic Susceptibility in the Second-Order Phase Transitions beyond the Curie Point

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Taking into account the inexhaustible interest in studying the peculiarities of physical properties in the neighborhood of phase transitions and the growth of experimental investigations of cobalt fluoride, we have studied the peculiarities of magnetic susceptibility in the vicinity of the critical field HC at which cobalt fluoride performs the second-order phase transition from the antiferromagnetic phase to the angular phase. It is discovered that in the magnetic field HC4, the magnetic susceptibility becomes infinite at HHC. It is shown that as the magnetic field direction deviates from the C4 axis, the magnetic susceptibility in the critical field HC proves to be finite. It is also shown that the change in the magnetic susceptibility with the change in the magnetic field considerably decreases at extremely insignificant deviations of the field H from the C4 axis. Since the calculations are performed in terms of the Landau theory of phase transitions, we pay attention to the similarity and difference between the obtained results and those in the vicinity of the Curie point obtained by using the Landau theory of phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

    Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  3. A. D. Bruce and R. A. Cowley, Structural Phase Transitions (Taylor and Francis, London, 1981).

    Google Scholar 

  4. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univ., Oxford, New York 1971; Mir, Moscow, 1973).

    Google Scholar 

  5. A. Patashinskii, V. Pokrovskii, and P. J. J. Shepherd, Fluctuation Theory of Phase Transitions (Pergamon, Oxford, 1979; Nauka, Moscow, 1975).

    Google Scholar 

  6. V. N. Ryzhov, E. E. Tareyeva, Yu. D. Fomin, and E. N. Tsiok, Phys. Usp. 60, 857 (2017).

    Article  ADS  Google Scholar 

  7. A. N. Utyuzh and A. V. Mikheyenkov, Phys. Usp. 60, 886 (2017).

    Article  ADS  Google Scholar 

  8. E. I. Kats, Phys. Usp. 60, 949 (2017).

    Article  ADS  Google Scholar 

  9. V. V. Brazhkin, Phys. Usp. 60, 954 (2017).

    Article  ADS  Google Scholar 

  10. T. R. Dugan, J. M. Goldberg, W. W. Brennessel, and P. L. Holland, Organometallics 31, 1349 (2012).

    Article  Google Scholar 

  11. Y. T. Teng, S. S. Pramana, J. Ding, T. Wu, and R. Yazami, Electrochim. Acta 107, 301 (2013).

    Article  Google Scholar 

  12. M. J. Armstrong, A. Panneerselvam, C. O’Regan, M. A. Morrisab, and J. D. Holmes, J. Mater. Chem. A 1, 10667 (2013).

    Article  Google Scholar 

  13. C. Y. Lee, Z. Su, K. Lee, H. Tsuchiya, and P. Schmuki, Chem. Commun. 50, 7067 (2014).

    Article  Google Scholar 

  14. M. C. Leclerc, J. M. Bayne, G. M. Lee, S. I. Gorelsky, M. Vasiliu, I. Korobkov, D. J. Harrison, D. A. Dixon, and R. T. Baker, J. Am. Chem. Soc. 137, 16064 (2015).

    Article  Google Scholar 

  15. J. Tan, L. Liu, S. Guo, H. Hu, Z. Yan, Q. Zhou, Z. Huang, H. Shu, X. Yang, and X. Wang, Electrochim. Acta 168, 225 (2015).

    Article  Google Scholar 

  16. O. G. Medvedovskaya, T. A. Fedorenko, and G. K. Chepurnykh, Phys. Solid State 58, 2438 (2016).

    Article  ADS  Google Scholar 

  17. N. F. Kharchenko, V. V. Eremenko, and L. I. Belyi, Sov. Phys. JETP 55, 490 (1982).

    Google Scholar 

  18. K. G. Gurtovoi, A. S. Lagutin, and V. I. Ozhogin, Sov. Phys. JETP 56, 1122 (1982).

    Google Scholar 

  19. G. K. Chepurnykh, Regions of Extremal Characteristics of Magneto-Ordered Crystals (Naukova Dumka, Kiev, 2010) [in Russian].

    Google Scholar 

  20. K. P. Belov, Soros. Obrazov. Zh. 3, 15 (1998).

    Google Scholar 

  21. L. D. Landau and I. M. Khalatnikov, Dokl. Akad. Nauk SSSR 94, 469 (1954).

    Google Scholar 

  22. S. V. Peletminskii, Sov. Phys. JETP 10, 321 (1959).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Chepurnykh.

Additional information

Original Russian Text © G.K. Chepurnykh, V.A. Chernaya, O.G. Medvedovskaya, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 9, pp. 1669–1673.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chepurnykh, G.K., Chernaya, V.A. & Medvedovskaya, O.G. Anomalies in the Magnetic Susceptibility in the Second-Order Phase Transitions beyond the Curie Point. Phys. Solid State 60, 1712–1717 (2018). https://doi.org/10.1134/S1063783418090068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418090068

Navigation