Skip to main content
Log in

Fine Structure of Rydberg Excitons in Cuprous Oxide

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In 1952, E.F. Gross and N.A. Karryev discovered excitons of big radius also called the Wannier–Mott excitons. Their energy spectrum, response to external electric and magnetic fields, and also elastic deformations of a crystal were extensively studied in the 1960s–1970s. The second wave of interest to excitons in Cu2O crystals appeared comparatively recent, in 2014, after the “giant” highly excited exciton states had been observed in this material. A theoretical description of highly excited exciton states needs, as a rule, new approaches, because, for such states, a deviation from the exactly solved hydrogen-like model becomes substantial and a numerical solution of the Schrödinger equation with allowance made for the features of the crystal energy band structure becomes extremely resource consuming. This report is a brief review of recent theoretical and experimental studies of the fine structure of the exciton energy spectrum in copper protoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Excitons, Ed. by E. I. Rashba and M. D. Sturge (North-Holland, Amsterdam, 1982).

  2. C. F. Klingshirn, Semiconductor Optics (Springer, Berlin, 2012).

    Book  Google Scholar 

  3. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science Int., Harrow, UK, 2005).

    Google Scholar 

  4. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th ed. (World Scientic, Singapore, 2009).

    Book  MATH  Google Scholar 

  5. A. Baldereschi and N. Lipari, Phys. Rev. B 8, 2697 (1973).

    Article  ADS  Google Scholar 

  6. A. Baldereschi and N. O. Lipari, Phys. Rev. B 9, 1525 (1974).

    Article  ADS  Google Scholar 

  7. J. Thewes, J. Heckötter, T. Kazimierczuk, M. Aßmann, D. Fröhlich, M. Bayer, M. A. Semina, and M. M. Glazov, Phys. Rev. Lett. 115, 027402 (2015).

    Article  ADS  Google Scholar 

  8. J. Heckötter, M. Freitag, D. Fröhlich, M. Aßmann, M. Bayer, M. A. Semina, and M. M. Glazov, Phys. Rev. B 95, 035210 (2017).

    Article  ADS  Google Scholar 

  9. S. Zielinska-Raczynska, D. Ziemkiewicz, and G. Czajkowski, Phys. Rev. B 94, 045205 (2016).

    Article  ADS  Google Scholar 

  10. F. Schweiner, J. Main, M. Feldmaier, G. Wunner, and C. Uihlein, Phys. Rev. B 93, 195203 (2016).

    Article  ADS  Google Scholar 

  11. F. Schweiner, J. Main, G. Wunner, M. Freitag, J. Heckötter, C. Uihlein, M. Aßmann, D. Fröhlich, and M. Bayer, Phys. Rev. B 95, 035202 (2017).

    Article  ADS  Google Scholar 

  12. T. F. Gallaher, Rydberg Atoms. Monographs on Nolecular and Chemical Physics (Cambridge Univ. Press, Cambridge, 2005).

    Google Scholar 

  13. E. F. Gross and N. A. Karryev, Dokl. Akad. Nauk SSSR 84, 471 (1952).

    Google Scholar 

  14. E. F. Gross, Nuovo Cimento Suppl. 3, 672 (1956).

    Article  Google Scholar 

  15. F. Schöne, S.-O. Krüger, P. Grünwald, H. Stolz, S. Scheel, M. Aßmann, J. Heckötter, J. Thewes, D. Fröhlich, and M. Bayer, Phys. Rev. B 93, 075203 (2016).

    Article  ADS  Google Scholar 

  16. C. Uihlein, D. Fröhlich, and R. Kenklies, Phys. Rev. B 23, 2731 (1981).

    Article  ADS  Google Scholar 

  17. T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Nature (London, U.K.) 514, 343 (2014).

    Article  ADS  Google Scholar 

  18. M. Altarelli and N. O. Lipari, Phys. Rev. B 7, 3798 (1973).

    Article  ADS  Google Scholar 

  19. E. O. Kane, Phys. Rev. B 11, 3850 (1975).

    Article  ADS  Google Scholar 

  20. R. Benchamekh, F. Raouafi, J. Even, F. B. C. Larbi, P. Voisin, and J.-M. Jancu, Phys. Rev. B 91, 045118 (2015).

    Article  ADS  Google Scholar 

  21. O. Roslyak and J. L. Birman, Solid State Commun. 145, 29 (2008).

    Article  ADS  Google Scholar 

  22. O. Roslyak and J. L. Birman, Phys. Rev. B 75, 245309 (2007).

    Article  ADS  Google Scholar 

  23. S. Zielinska-Raczynska, G. Czajkowski, and D. Ziemkiewicz, Phys. Rev. B 93, 075206 (2016).

    Article  ADS  Google Scholar 

  24. F. Schweiner, J. Ertl, J. Main, G. Wunner, and C. Uihlein, Phys. Rev. B 96, 245202 (2017).

    Article  ADS  Google Scholar 

  25. E. Ruiz, S. Alvarez, P. Alemany, and R. A. Evarestov, Phys. Rev. B 56, 7189 (1997); M. French, R. Schwartz, H. Stolz, and R. Redmer, J. Phys.: Condens. Matter 21, 015502 (2009).

    Article  ADS  Google Scholar 

  26. S. V. Gastev and N. S. Sokolov, Sov. Phys. Solid State 22, 571 (1980); Sov. Phys. Solid State 27, 255 (1985).

    Google Scholar 

  27. N. L. Yakovlev and N. S. Sokolov, Sov. Phys. Solid State 28, 1117 (1986).

    Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974, 3rd ed.; Pergamon, New York, 1977, 3rd ed.).

    Google Scholar 

  29. J. Heckötter, M. Freitag, D. Fröhlich, M. Aßmann, M. Bayer, M. A. Semina, and M. M. Glazov, Phys. Rev. B 96, 125142 (2017).

    Article  ADS  Google Scholar 

  30. A. G. Zhilich and B. S. Monozon, Sov. Phys. Solid State 8, 2846 (1966).

    Google Scholar 

  31. R. P. Seisyan, Spectroscopy of Diamagnetic Exitons (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  32. R. P. Seisyan, Phys. Solid State 58, 859 (2016).

    Article  ADS  Google Scholar 

  33. M. Aßmann, J. Thewes, D. Fröhlich, and M. Bayer, Nat. Mater. 15, 741 (2016).

    Article  ADS  Google Scholar 

  34. F. Schweiner, J. Main, and G. Wunner, Phys. Rev. Lett. 118, 046401 (2017).

    Article  ADS  Google Scholar 

  35. F. Schweiner, J. Main, and G. Wunner, Phys. Rev. E 95, 062205 (2017).

    Article  ADS  Google Scholar 

  36. V. T. Agekyan, B. S. Monozon, and I. P. Shiryapov, Phys. Status Solidi B 66, 359 (1974).

    Article  ADS  Google Scholar 

  37. V. T. Agekyan, Phys. Status Solidi A 43, 11 (1977).

    Article  ADS  Google Scholar 

  38. E. F. Gross, B. P. Zakharchenya, and N. M. Reinov, Dokl. Akad. Nauk SSSR 97, 57 (1954); Dokl. Akad. Nauk SSSR 99, 527 (1954).

    Google Scholar 

  39. E. F. Gross, B. P. Zakharchenya, and P. P. Pavinskii, Sov. Tech. Phys. 2, 2018 (1957).

    Google Scholar 

  40. E. F. Gross, Usp. Fiz. Nauk 63, 575 (1957).

    Article  Google Scholar 

  41. E. F. Gross and A. A. Kaplyanskii, Sov. Phys. Solid State 2, 2637 (1960).

    Google Scholar 

  42. E. F. Gross, Sov. Phys. Usp. 5, 195 (1962).

    Article  ADS  Google Scholar 

  43. E. F. Gross and A. A. Kaplyanskii, Sov. Phys. Solid State 2, 353 (1960).

    Google Scholar 

  44. I. A. Merkulov, Sov. Phys. JETP 39, 1140 (1974).

    ADS  Google Scholar 

  45. A. G. Aronov and A. S. Ioselevich, Sov. Phys. JETP 47, 548 (1978).

    ADS  Google Scholar 

  46. I. P. Areshev, Sov. Phys. Solid State 21, 447 (1979).

    Google Scholar 

  47. S. Yu. Slavyanov, in Problems of Mathematical Physics, Collection of Articles (Leningr. Gos. Univ., Leningrad, 1970), p. 4 [in Russian].

    Google Scholar 

  48. V. D. Mur and V. S. Popov, Sov. Phys. JETP 67, 70 (1988).

    Google Scholar 

  49. J. Heckötter, M. Freitag, D. Fröhlich, M. Aßmann, M. Bayer, M. A. Semina, and M. M. Glazov, to be published.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Semina.

Additional information

Original Russian Text © M.A. Semina, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 8, pp. 1515–1524.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semina, M.A. Fine Structure of Rydberg Excitons in Cuprous Oxide. Phys. Solid State 60, 1527–1536 (2018). https://doi.org/10.1134/S1063783418080218

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418080218

Navigation