Skip to main content
Log in

Oscillations of the Degree of Circular Polarization in the Optical Spin Hall Effect

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The optical spin Hall effect appears when elastically scattered exciton polaritons couple to an effective magnetic field inside of quantum wells in semiconductor microcavities. Theory predicts an oscillation of the pseudospin of the exciton polaritons in time. Here, we present a detailed analysis of momentum space dynamics of the exciton polariton pseudospin. Compared to what is predicted by theory, we find a higher modulation of the temporal oscillations of the pseudospin. We attribute the higher modulation to additional components of the effective magnetic field which have been neglected in the foundational theory of the optical spin Hall effect. Adjusting the model by adding non-linear polariton-polariton interactions, we find a good agreement in between the experimental results and simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature (London, U.K.) 443, 409 (2006).

    Article  ADS  Google Scholar 

  2. D. Sarkar, S. Gavrilov, M. Sich, J. Quilter, R. Bradley, N. Gippius, K. Guda, V. Kulakovskii, M. Skolnick, and D. Krizhanovskii, Phys. Rev. Lett. 105, 216402 (2010).

    Article  ADS  Google Scholar 

  3. M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. Höfling, Phys. Rev. B 91, 081404 (2015).

    Article  ADS  Google Scholar 

  4. A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, Nat. Phys. 5, 805 (2009).

    Article  Google Scholar 

  5. I. Carusotto and C. Ciuti, Phys. Rev. Lett. 93, 166401 (2004).

    Article  ADS  Google Scholar 

  6. A. Kavokin, G. Malpuech, and F. P. Laussy, Phys. Lett. A 306, 187 (2003).

    Article  ADS  Google Scholar 

  7. D. Ballarini, M. de Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, in CLEO: QELS Fundamental Science, Proceedings of the Conference on Lasers and Electro-Optics, June 9–14, 2013, San Jose, CA (2013), QM1D.

    Google Scholar 

  8. T. Espinosa-Ortega and T. C. H. Liew, Phys. Rev. B 87, 195305 (2013).

    Article  ADS  Google Scholar 

  9. C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. P. Karr, E. Giacobino, and A. Bramati, Phys. Rev. Lett. 99, 196402 (2007).

    Article  ADS  Google Scholar 

  10. I. A. Shelykh, A. V. Kavokin, Y. G. Rubo, T. C. H. Liew, and G. Malpuech, Semicond. Sci. Technol. 25, 013001 (2010).

    Article  ADS  Google Scholar 

  11. H. Suchomel, S. Brodbeck, T. Liew, M. Amthor, M. Klaas, S. Klembt, M. Kamp, S. Höfling, C. Schneider, et al., Sci. Rep. 7 (2017).

  12. C. Antón, S. Morina, T. Gao, P. Eldridge, T. C. H. Liew, M. Martín, Z. Hatzopoulos, P. Savvidis, I. A. Shelykh, and L. Viña, Phys. Rev. B 91, 075305 (2015).

    Article  ADS  Google Scholar 

  13. A. Askitopoulos, K. Kalinin, T. C. H. Liew, P. Cilibrizzi, Z. Hatzopoulos, P. G. Savvidis, N. G. Berloff, and P. G. Lagoudakis, Phys. Rev. B 93, 205307 (2016).

    Article  ADS  Google Scholar 

  14. P. Cilibrizzi, H. Sigurdsson, T. C. Liew, H. Ohadi, S. Wilkinson, A. Askitopoulos, I. A. Shelykh, and P. Lagoudakis, Phys. Rev. B 92, 155308 (2015).

    Article  ADS  Google Scholar 

  15. T. Gao, C. Antón, T. C. H. Liew, M. Martín, Z. Hatzopoulos, L. Viña, P. Eldridge, and P. Savvidis, Appl. Phys. Lett. 107, 011106 (2015).

    Article  ADS  Google Scholar 

  16. K. Kavokin, I. Shelykh, A. Kavokin, G. Malpuech, and P. Bigenwald, Phys. Rev. Lett. 92, 017401 (2004).

    Article  ADS  Google Scholar 

  17. A. Kavokin, G. Malpuech, and M. Glazov, Phys. Rev. Lett. 95, 136601 (2005).

    Article  ADS  Google Scholar 

  18. R. Houdré, C. Weisbuch, R. Stanley, U. Oesterle, and M. Ilegems, Phys. Rev. B 61, R13333 (2000).

    Article  ADS  Google Scholar 

  19. T. Freixanet, B. Sermage, J. Bloch, J. Marzin, B. Gayral, and R. Planel, Phys. E (Amsterdam, Neth.) 7, 676 (2000).

    Article  Google Scholar 

  20. W. Langbein and J. M. Hvam, Phys. Rev. Lett. 88, 047401 (2002).

    Article  ADS  Google Scholar 

  21. C. Leyder, M. Romanelli, J. P. Karr, E. Giacobino, T. C. Liew, M. M. Glazov, A. V. Kavokin, G. Malpuech, and A. Bramati, Nat. Phys. 3, 628 (2007).

    Article  Google Scholar 

  22. S. Morina, T. C. H. Liew, and I. A. Shelykh, Phys. Rev. B 88, 035311 (2013).

    Article  ADS  Google Scholar 

  23. I. Shelykh, G. Malpuech, K. Kavokin, A. Kavokin, and P. Bigenwald, Phys. Rev. B 70, 115301 (2004).

    Article  ADS  Google Scholar 

  24. H. Flayac, D. Solnyshkov, and G. Malpuech, New J. Phys. 14, 085018 (2012).

    Article  ADS  Google Scholar 

  25. G. Nardin, T. K. Paraïso, R. Cerna, B. Pietka, Y. Léger, O. El Daif, F. Morier-Genoud, and B. Deveaud-Plédran, Appl. Phys. Lett. 94, 181103 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Schmidt.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, D., Berger, B., Bayer, M. et al. Oscillations of the Degree of Circular Polarization in the Optical Spin Hall Effect. Phys. Solid State 60, 1606–1610 (2018). https://doi.org/10.1134/S1063783418080206

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418080206

Navigation