Skip to main content
Log in

Structural Aspects of Deformational Amorphization of Ti50Ni25Cu25 Crystalline Alloy under High Pressure Torsion

  • Dynamics of Cell
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The evolution of the structure of the Ti50Ni25Cu25 crystalline alloy during high-pressure torsion at room temperature has been studied. The torsional moment variation curve as a function of the strain value was fixed in situ, which allowed directly observing the transition of the material from the crystalline state to the amorphous state during the HPT. It was found that the amorphization of the material in the course of the HPT begins on the grain boundaries and fragments of the crystalline phase. Amorphized boundaries form a “grain-boundary carcass” in the cells of which the high-defect nanocrystalline phase is formed. Growth of deformation leads to broadening of the “grain-boundary carcass,” loss of stability of the crystalline phase, and, as a consequence, to the phase transition “crystal → amorphous” state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Edalati and Z. Horita, Mater. Sci. Eng. A 652, 325 (2016).

    Article  Google Scholar 

  2. R. V. Sundeev, A. M. Glezer, and A. V. Shalimova, J. Alloys Compd. 611, 292 (2014).

    Article  Google Scholar 

  3. F. Q. Meng, K. Tsuchiya, and Y. Yokoyama, Intermetallics 37, 52 (2013).

    Article  Google Scholar 

  4. J. Y. Huang, Y. T. Zhu, X. Z. Liao, and R. Z. Valiev, Philos. Mag. Lett. 84, 183 (2004).

    Article  ADS  Google Scholar 

  5. B. B. Straumal, A. A. Mazilkin, S. G. Protasova, D. V. Gunderov, G. A. López, and B. Baretzky, Mater. Lett. 161, 735 (2015).

    Article  Google Scholar 

  6. E. B. Tat’yanin, V. G. Kurdyumov, and V. B. Fedorov, Fiz. Met. Metalloved. 62, 133 (1986).

    Google Scholar 

  7. K. Inaekyan, V. Brailovski, S. Prokoshkin, A. Korotitskiy, and A. Glezer, J. Alloys Compd. 473, 71 (2009).

    Article  Google Scholar 

  8. V. I. Zel’dovich, N. Yu. Frolova, V. P. Pilyugin, V. M. Gundyrev, and A. M. Patselov, Phys. Met. Metallogr. 99, 425 (2005).

    Google Scholar 

  9. A. V. Shelyakov, N. N. Sitnikov, A. P. Menushenkov, A. A. Korneev, and R. N. Rizakhanov, J. Alloys Compd. 577, 251 (2013).

    Article  Google Scholar 

  10. S. M. Ivanov, E. A. Pechina, V. I. Lad’yanov, G. A. Dorofeev, V. P. Pilyugin, and E. V. Kuz’minykh, Zavod. Lab. Diagn. Mater. 79 (7), 49 (2013).

    Google Scholar 

  11. P. W. Bridgman, Studies in Large Plastic Flow and Fracture (McGraw-Hill, New York, 1952; Librokom, Moscow, 2010).

    Google Scholar 

  12. E. V. Shelekhov and T. A. Sviridova, Metalloved. Termich. Obrab. Met. 8, 16 (2000).

    Google Scholar 

  13. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, and V. P. Pilyugin, Acta Mater. 55, 6039 (2007).

    Article  Google Scholar 

  14. E. A. Pechina, S. M. Ivanov, V. I. Lad’yanov, D. I. Chukov, G. A. Dorofeev, E. V. Kuz’minykh, and M. I. Mokrushina, Deform. Razrush. Mater. 4, 41 (2013).

    Google Scholar 

  15. L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, Yu. G. Krasnoperova, and N. N. Resnina, Mater. Sci. Eng. A 639, 155 (2015).

    Article  Google Scholar 

  16. V. V. Rybin, Large Plastic Deformations and Fracture of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  17. A. V. Korznikov, A. N. Tyumentsev, and I. A. Ditenberg, Phys. Met. Metallogr. 106, 418 (2008).

    Article  ADS  Google Scholar 

  18. V. G. Gryaznov and L. I. Trusov, Prog. Mater. Sci. 37, 289 (1993).

    Article  Google Scholar 

  19. A. M. Glezer and V. A. Pozdnyakov, Nanostruct. Mater. 6, 767 (1995).

    Article  Google Scholar 

  20. H. van Swygenhoven, and A. Caro, Phys. Rev. B 58, 246 (1998).

    Google Scholar 

  21. H. N. Jarmakani, E. M. Bringa, P. Erhart, B. A. Remington, Y. M. Wang, N. Q. Voc, and M. A. Meyers, Acta Mater. 56, 5584 (2008).

    Article  Google Scholar 

  22. A. M. Glezer, V. L. Stolyarov, A. A. Tomchuk, and N. A. Shurygina, Tech. Phys. Lett. 42, 51 (2016).

    Article  ADS  Google Scholar 

  23. R. V. Sundeev, A. V. Shalimova, E. A. Pechina, A. M. Glezer, G. I. Nosova, and N. N. Sitnikov, Bull. Russ. Acad. Sci.: Phys. 79, 1156 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Sundeev.

Additional information

Original Russian Text © R.V. Sundeev, A.V. Shalimova, A.M. Glezer, E.A. Pechina, M.V. Gorshenkov, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 6, pp. 1157–1161.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundeev, R.V., Shalimova, A.V., Glezer, A.M. et al. Structural Aspects of Deformational Amorphization of Ti50Ni25Cu25 Crystalline Alloy under High Pressure Torsion. Phys. Solid State 60, 1168–1172 (2018). https://doi.org/10.1134/S106378341806032X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341806032X

Navigation