Skip to main content
Log in

Edge Vibrations of Graphane Nanoribbons

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using the COMPASS force field, natural linear vibrations of graphane (graphene hydrogenated on both sides) nanoribbons are simulated. The frequency spectrum of a graphane sheet consists of three continuous intervals (low-frequency, mid-frequency, and narrow high-frequency) and two gaps between them. The construction of dispersion curves for nanoribbons with a zigzag and chair structure of the edges show that the frequencies of edge vibrations (edge phonons) can be present in the gaps of the frequency spectrum. In the first type of nanoribbons, two dispersion curves are in the low-frequency gap of the spectrum and four dispersion curves in the second gap. These curves correspond to phonons moving only along the nanoribbon edges (the mean depth of their penetration toward the nanoribbon center does not exceed 0.15 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. F. Sluiter and Y. Kawazoe, Phys. Rev. B 68, 085410 (2003).

    Article  ADS  Google Scholar 

  2. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).

    Article  ADS  Google Scholar 

  3. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science (Washington, DC, U. S.) 323, 610 (2009).

    Article  ADS  Google Scholar 

  4. D. K. Samarakoon and X.-Q. Wang, ACS Nano 3, 4017 (2009).

    Article  Google Scholar 

  5. Y.-E. Yang, Y.-R. Yang, and X.-H. Yan, Phys. E (Amsterdam, Neth.) 44, 1406 (2012).

    Article  Google Scholar 

  6. H. Peelaers, A. D. Hernández-Nieves, O. Leenaerts, B. Partoens, and F. M. Peeters, Appl. Phys. Lett. 98, 051914 (2011).

    Article  ADS  Google Scholar 

  7. M. Terrones, A. R. Botello-Mendez, J. Campos-Delgado, F. Lypez-Urias, Y. I. Vega-Cantu, F. J. Rodriguez-Macias, A. L. Elias, E. Munoz-Sandoval, A. G. Cano-Marquez, J. C. Charlier, and H. Terrones, Nano Today 5, 351 (2010).

    Article  Google Scholar 

  8. M. Vandescuren, P. Hermet, V. Meunier, L. Henrard, and Ph. Lambin, Phys. Rev. B 78, 195401 (2008).

    Article  ADS  Google Scholar 

  9. A. V. Savin and Y. S. Kivshar, Phys. Rev. B 81, 165418 (2010).

    Article  ADS  Google Scholar 

  10. A. V. Savin, Y. S. Kivshar, and B. Hu, Phys. Rev. B 82, 195422 (2010).

    Article  ADS  Google Scholar 

  11. H. Sun, J. Phys. Chem. B 102, 7338 (1998).

    Article  Google Scholar 

  12. B. Liu, J. A. Baimova, S. V. Dmitriev, X. Wang, H. Zhu, and K. Zhou, J. Phys. D 46, 305302 (2013).

    Article  Google Scholar 

  13. G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko, and D. S. Ryabov, Phys. Rev. B 90, 045432 (2014).

    Article  ADS  Google Scholar 

  14. J. A. Baimova, R. T. Murzaea, and A. I. Rudskoy, Phys. Lett. A 381, 3049 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savin.

Additional information

Original Russian Text © A.V. Savin, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 5, pp. 1029–1035.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, A.V. Edge Vibrations of Graphane Nanoribbons. Phys. Solid State 60, 1046–1053 (2018). https://doi.org/10.1134/S1063783418050281

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783418050281

Navigation