Skip to main content
Log in

A study of melting of various types of Pt–Pd nanoparticles

  • Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The melting processes of various Pt–Pd nanoparticles (binary alloy, core–shell, D ≤ 4.0 nm) with different percent platinum atom content are investigated via the molecular dynamics using the embedded atom method potential in order to establish the thermal stability of simulated particle structure. In accordance with the data obtained, the most thermally stable are Pt–Pd nanoalloys with a diameter above 2.0 nm and core–shell Pd@Pt particles. As is shown, heating of binary Pt–Pd cluster alloys with the particle diameters less than 2.0 nm may cause the transition to pentagonal symmetry structures and core–shell-like complex formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Bell, Science 299, 1688 (2003).

    Article  ADS  Google Scholar 

  2. Y. Kim, J. W. Hong, Y. W. Lee, M. Kim, D. Kim, W. S. Yun, and S. W. Han, Angew. Chem. 49, 10197 (2010).

    Article  Google Scholar 

  3. H. Ataee-Esfahani, L. Wang, Y. Nemoto, and Y. Yamauchi, Chem. Mater. 22, 6310 (2010).

    Article  Google Scholar 

  4. S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, Nat. Mater. 7, 333 (2008).

    Article  ADS  Google Scholar 

  5. S. Alayoglu and B. Eichhorn, J. Am. Chem. Soc. 130, 17479 (2008).

    Article  Google Scholar 

  6. L. Wang, Y. Nemoto, and Y. J. Yamauchi, Am. Chem. Soc. 133, 9674 (2011).

    Article  Google Scholar 

  7. C. Massen, T. V. Mortimer-Jones, and R. L. Johnston, J. Chem. Soc. 23, 4375 (2002).

    Google Scholar 

  8. S. I. Sanchez, M. W. Small, J. M. Zuo, and R. G. Nuzzo, J. Am. Chem. Soc. 131, 8683 (2009).

    Article  Google Scholar 

  9. F. Tao, M. E. Grass, Y. W. Zhang, D. R. Butcher, J. R. Renzas, Z. Liu, J. Y. Chung, B. S. Mun, M. Salmeron, and G. A. Somorjai, Science 322, 932 (2008).

    Article  ADS  Google Scholar 

  10. Y. Ding, F. R. Fan, Z. Q. Tian, and Z. L. Wang, J. Am. Chem. Soc. 132, 12480 (2010).

    Article  Google Scholar 

  11. R. S. Berry and B. M. Smirnov, Phys. Usp. 56, 973 (2013).

    Article  ADS  Google Scholar 

  12. X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B 69, 144113 (2004).

    Article  ADS  Google Scholar 

  13. K. Yun, P. R. Cha, J. Lee, J. Kim, and H. S. Nam, arXiv:1502.07372 (2015).

    Google Scholar 

  14. J. R. Michalka and J. D. Gezelter, J. Phys. Chem. C 119, 14239 (2015).

    Google Scholar 

  15. S. Nosé, Mol. Phys. 52, 255 (1984).

    Article  ADS  Google Scholar 

  16. S. Nosé, J. Phys. Chem. 81, 511 (1984).

    Article  Google Scholar 

  17. W. G. Hoover, Time Reversibility, Computer Simulation, and Chaos (World Scientific, Singapore, 1999).

    Book  MATH  Google Scholar 

  18. D. V. Kheerman, Methods of Computer Experiment in Theoretical Physics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  19. A. X. Yin, X. Q. Min, W. Zhu, H. S. Wu, Y. W. Zhang, and C. H. Yan, Chem. Commun. 48, 543 (2012).

    Article  Google Scholar 

  20. Y. Lei, B. Liu, J. Lu, R. J. Lobo-Lapidus, T. Wu, H. Feng, X. Xia, A. U. Mane, J. A. Libera, J. P. Greeley, and J. T. Miller, Chem. Mater. 24, 3525 (2012).

    Article  Google Scholar 

  21. L. O. Paz-Borbón, Th. V. Mortimer-Jones, R. L. Johnston, A. Posada-Amarillas, G. Barcaro, and A. Fortunelli, Phys. Chem. Chem. Phys. 9, 5202 (2007).

    Article  Google Scholar 

  22. N. V. Long, T. D. Hien, T. Asaka, M. Ohtaki, and M. Nogami, Int. J. Hydrogen Energy 36, 8478 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Chepkasov.

Additional information

Original Russian Text © I.V. Chepkasov, Yu.Ya. Gafner, M.A. Vysotin, L.V. Redel’, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 10, pp. 2050–2055.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chepkasov, I.V., Gafner, Y.Y., Vysotin, M.A. et al. A study of melting of various types of Pt–Pd nanoparticles. Phys. Solid State 59, 2076–2081 (2017). https://doi.org/10.1134/S1063783417100109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417100109

Navigation