Skip to main content
Log in

Photoinduced absorption of THz radiation in semi-insulating GaAs crystal

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The influence of optical illumination on transmission of THz radiation through a bulk crystal of semi-insulating GaAs is experimentally studied. It is established that, without additional illumination, absorption of electromagnetic waves with a frequency of about 1 THz in the studied crystal is almost absent. Optical illumination in the spectral range of fundamental absorption of the crystal does not affect the transmission of THz waves. At the same time, if the illumination photon energy is a little below the edge of fundamental absorption, i.e., actually in the transparency region, the transmission of THz radiation drops sharply. At liquid helium temperature, the maximum effect is achieved for the energy of optical photons lower by approximately 30 meV than the crystal band gap. Further shift of the illumination toward lower photon energies is accompanied by almost complete recovery of the transmission. With increasing sample temperature, the spectral range of efficient action of the illumination shifts together with the edge of fundamental absorption toward lower photon energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Dragoman and M. Dragoman, Prog. Quantum Electron. 28, 1 (2004).

    Article  ADS  Google Scholar 

  2. V. G. Bespalov, J. Opt. Technol. 73, 745 (2006).

    Article  Google Scholar 

  3. V. M. Isaev, I. N. Kabanov, V. V. Komarov, and V. P. Meshchanov, Dokl. TUSURa 4 (34), 5 (2014).

    Google Scholar 

  4. X.-C. Zhang and Jingzhou Xu, Introduction to THz Wave Photonics (Springer, New York, 2010).

    Book  Google Scholar 

  5. O. Cherkasova, M. Nazarov, and A. Shkurinov, Opt. Quantum Electron. 48, 217 (2016).

    Article  Google Scholar 

  6. H.-J. Song and T. Nagatsuma, IEEE Trans. Terahertz Sci. Technol. 1, 256 (2011).

    Article  ADS  Google Scholar 

  7. A. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle, Drug Invent. Today 5, 157 (2013).

    Article  Google Scholar 

  8. G. Chattopadhyay, IEEE Trans. Terahertz Sci. Technol. 1, 33 (2011).

    Article  ADS  Google Scholar 

  9. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2009).

    Google Scholar 

  10. L. Hrivnák, Czech. J. Phys. B 34, 436 (1984).

    Article  ADS  Google Scholar 

  11. E. B. Aleksandrov and V. S. Zapasskii, Opt. Spectrosc. 41, 502 (1976).

    ADS  Google Scholar 

  12. E. B. Aleksandrov and V. S. Zapasskii, On Photons and Spins (St.Pb. Gos. Univ., St. Petersburg, 2009) [in Russian].

    Google Scholar 

  13. F. Urbach, Phys. Rev. 92, 1324 (1953).

    Article  ADS  Google Scholar 

  14. V. L. Bonch-Bruevich and S. G. Kalashnikov, The Physics of Semiconductors (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  15. P. G. Huggard, J. A. Cluff, G. P. Moore, C. J. Shaw, S. R. Andrews, S. R. Keiding, and D. A. Ritchie, J. Appl. Phys. 87, 2382 (2000).

    Article  ADS  Google Scholar 

  16. Y. Oyama, H. Dezaki, Y. Shimizu, and K. Maeda, Appl. Phys. Lett. 106, 022109 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kurdyubov.

Additional information

Original Russian Text © A.S. Kurdyubov, A.V. Trifonov, I.Ya. Gerlovin, I.V. Ignatiev, A.V. Kavokin, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 7, pp. 1274–1277.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurdyubov, A.S., Trifonov, A.V., Gerlovin, I.Y. et al. Photoinduced absorption of THz radiation in semi-insulating GaAs crystal. Phys. Solid State 59, 1298–1301 (2017). https://doi.org/10.1134/S1063783417070125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417070125

Navigation