Skip to main content
Log in

A theory of the inverse magnetoelectric effect in layered magnetostrictive–piezoelectric structures

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theory of the inverse magnetoelectric effect in layered structures has been presented. The theory is based on solving the equations of elastodynamics and electrostatics separately for the magnetostrictive and piezoelectric phases, taking into account the conditions at the interface between the phases. Expressions for the coefficient of inverse magnetoelectric conversion through the parameters characterizing the magnetostrictive and piezoelectric phases have been obtained. Theoretical dependences of the inverse magnetoelectric conversion coefficient on the frequency of the alternating-current electric field for the three-layer PZT–Ni–PZT structure and the two-layer terfenol-D–PZT structure have been calculated. The results of the calculations are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (GIFML, Moscow, 1959; Butterworth–Heinemann, Oxford, 1984).

    Google Scholar 

  2. I. E. Dzyaloshinskii, Sov. Phys. JETP 10, 623 (1959).

    MathSciNet  Google Scholar 

  3. D. N. Astrov, Sov. Phys. JETP 13, 729 (1961).

    Google Scholar 

  4. V. J. Folen, G. T. Rado, and E. W. Stalder, Phys. Rev. Lett. 6, 607 (1961).

    Article  ADS  Google Scholar 

  5. A. P. Pyatakov and A. K. Zvezdin, Phys.—Usp. 55 (6), 557 (2012).

    Article  ADS  Google Scholar 

  6. E. Kita, K. Siratori, and A. J. Tasaki, J. Phys. Soc. Jpn. 46, 1033 (1979).

    Article  ADS  Google Scholar 

  7. M. I. Bichurin and B. M. Petrov, Sov. Phys. Solid State 29 (8), 1445 (1987).

    Google Scholar 

  8. G. Srinivasan and Y. K. Fetisov, Integr. Ferroelectr. 83, 89 (2006).

    Article  Google Scholar 

  9. H-M. Zhou, O. Chen, and J.-H. Deng, Chin. Phys. B 23, 04752 (2014).

    Google Scholar 

  10. M. I. Bichurin and D. A. Filippov, Ferroelectrics 204, 225 (1997).

    Article  Google Scholar 

  11. J. Van den Boomgard, R. A. J. Born, and H. F. J. I. Giller, J. Mater. Sci. 9, 1705 (1974).

    Article  ADS  Google Scholar 

  12. A. M. J. G. Van Run, D. R. Terrell, and J. H. Scholing, J. Mater. Sci. 9, 1710 (1974).

    Article  ADS  Google Scholar 

  13. C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).

    Article  ADS  Google Scholar 

  14. Y. Wang, J. Li, and D. Vieland, Mater. Today 17, 269 (2014).

    Article  Google Scholar 

  15. S. Dong, J. F. Li, D. Viehland, J. Cheng, and L. E. Cross, Appl. Phys. Lett. 83, 1354 (2004).

    Google Scholar 

  16. D. A. Filippov, T. A. Galkina, V. M. Laletin, and G. Srinivasan, Tech. Phys. Lett. 38 (1), 93 (2012).

    Article  ADS  Google Scholar 

  17. G. Harshe, J. O. Dougherty, and R. E. Newnham, Int. J. Appl. Electromagn. Mater. 4, 145 (1993).

    Google Scholar 

  18. M. I. Bichurin, V. M. Petrov, and G. Srinivasan, Phys. Rev. B: Condens. Matter 68 (5), 054402 (2003).

    Article  ADS  Google Scholar 

  19. D. A. Filippov, T. A. Galkina, and G. Srinivasan, Tech. Phys. Lett. 36 (11), 984 (2010).

    Article  ADS  Google Scholar 

  20. D. A. Filippov, T. A. Galkina, V. M. Laletin, and G. Srinivasan, Phys. Solid State 53 (9), 1832 (2011).

    Article  ADS  Google Scholar 

  21. D. A. Filippov, V. M. Laletin, and G. S. Radchenko, Tech. Phys. Lett. 41 (8), 807 (2015).

    Article  ADS  Google Scholar 

  22. D. A. Filippov, Phys. Solid State 47 (6), 1118 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  23. D. A. Filippov, V. M. Laletin, and T. A. Galichyan, Phys. Solid State 55 (9), 1840 (2013).

    Article  ADS  Google Scholar 

  24. Y. K. Fetisov, V. M. Petrov, and G. Srinivasan, J. Mater. Res. 22, 2074 (2007).

    Article  ADS  Google Scholar 

  25. B. Tong, X. F. Yang, J. Ouyang, G. Q. Lin, and S. Chen, J. Alloys Compd. 563, 51 (2013).

    Article  Google Scholar 

  26. M. I. Bichurin, V. M. Petrov, and R. V. Petrov, J. Magn. Magn. Mater. 324, 3548 (2012).

    Article  ADS  Google Scholar 

  27. H. C. Xuan, L. Y. Wang, S. C. Ma, Y. X. Zheng, Q. Q. Cao, D. H. Wang, and Y. W. Du, Appl. Phys. Lett. 98, 052505 (2011).

    Article  ADS  Google Scholar 

  28. Yuan Zhang, Guoxi Liu, Meiya Li, Jun Li, and Yongdan Zhu, J. Alloys Compd. 641, 188 (2015).

    Article  Google Scholar 

  29. A. V. Kalgin, S. A. Gridnev, and Z. H. Gribe, Phys. Solid State 56 (7), 1327 (2014).

    Article  ADS  Google Scholar 

  30. D. A. Burdin, D. V. Chashin, N. A. Ekonomov, L. Y. Fetisov, Y. K. Fetisov, G. Srinivasan, and G. Sreenivasulu, J. Magn. Magn. Mater. 358–359, 98 (2014).

    Article  Google Scholar 

  31. S. H. Lim, S. R. Kim, S. Y. Kang, J. K. Park, J. T. Nam, and D. Son, J. Magn. Magn. Mater. 191, 113 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Filippov.

Additional information

Original Russian Text © D.A. Filippov, G.S. Radchenko, T.O. Firsova, T.A. Galkina, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 5, pp. 859–864.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, D.A., Radchenko, G.S., Firsova, T.O. et al. A theory of the inverse magnetoelectric effect in layered magnetostrictive–piezoelectric structures. Phys. Solid State 59, 878–884 (2017). https://doi.org/10.1134/S1063783417050122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417050122

Navigation