Skip to main content
Log in

Polariton excitations in a non-ideal array of microcavities with quantum dots

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The polariton spectrum of a one-dimensional non-ideal array of coupled microcavities containing quantum dots has been studied. The specific features of the dispersion of electromagnetic excitations, which are induced in this system both by a variation in the distance between the adjacent microcavities and by a variation in the composition of the quantum dots, have been investigated using the numerical simulation within the framework of the virtual crystal approximation. The density of states of the quasiparticles under consideration has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Milonni, Fast Light, Slow Light and Left-Handed Light (Institute of Physics, Bristol, 2005).

    Google Scholar 

  2. Z. S. Yang, N. H. Kwong, R. Binder, and A. L. Smirl, J. Opt. Soc. Am. B 22, 2144 (2005).

    Article  ADS  Google Scholar 

  3. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, Phys. Rev. Lett. 94 (7), 073903 (2005).

    Article  ADS  Google Scholar 

  4. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88 (2), 023602 (2002).

    Article  ADS  Google Scholar 

  5. A. P. Alodjants, I. O. Barinov, and S. M. Arakelian, J. Phys. B: At., Mol. Opt. Phys. 43, 095502 (2010).

    Article  ADS  Google Scholar 

  6. E. S. Sedov, A. P. Alodjants, S. M. Arakelian, Y. Y. Lin, and R.-K. Lee, Phys. Rev. A: At., Mol., Opt. Phys. 84 (1), 013813 (2011).

    Article  ADS  Google Scholar 

  7. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, Princeton, 2008).

    MATH  Google Scholar 

  8. K. J. Vahala, Nature (London) 424, 839 (2003).

    Article  ADS  Google Scholar 

  9. R. K. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, J. Opt. Soc. Am. B 17 (4), 629 (2000).

    Article  ADS  Google Scholar 

  10. J. Vučkovič, M. Lončar, H. Mabuchi, and A. Scherer, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65 (1), 016608 (2001).

    Article  Google Scholar 

  11. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science (Washington) 316, 1007 (2007).

    Article  ADS  Google Scholar 

  12. A. Amo, J. Lefrére, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, and A. Bramati, Nat. Phys. 5, 805 (2009).

    Article  Google Scholar 

  13. M. A. Kalitievskii, Tech. Phys. Lett. 23 (2), 120 (1997).

    Article  ADS  Google Scholar 

  14. V. G. Golubev, A. A. Dukin, A. V. Medvedev, A. B. Pevtsov, A. V. Sel’kin, and N. A. Feoktistov, Semiconductors 37 (7), 832 (2003).

    Article  ADS  Google Scholar 

  15. D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vučkovič, Phys. Rev. Lett. 104 (7), 073904 (2010).

    Article  ADS  Google Scholar 

  16. V. V. Rumyantsev, S. A. Fedorov, K. V. Gumennyk, M. V. Sychanova, and A. V. Kavokin, Nat. Sci. Rep. 4, 6945 (2014).

    Article  ADS  Google Scholar 

  17. V. V. Rumyantsev, S. A. Fedorov, K. V. Gumennyk, and M. V. Sychanova, Phys. B (Amsterdam, Neth.) 461, 32 (2015).

    Article  ADS  Google Scholar 

  18. J. R. Anglin and A. Vardi, Phys. Rev. A: At., Mol., Opt. Phys. 64 (1), 013605 (2001).

    Article  ADS  Google Scholar 

  19. V. A. Averchenko, A. P. Alodzhants, S. M. Arakelyan, S. N. Bagaev, E. A. Vinogradov, V. S. Egorov, A. I. Stolyarov, and I. A. Chekhonin, Kvantovaya Elektron. (Moscow) 36, 532 (2006).

    Article  Google Scholar 

  20. V. M. Agranovich, The Theory of Excitons (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  21. J. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge University Press, Cambridge, 1979; Mir, Moscow, 1982).

    Google Scholar 

  22. V. F. Los’, Theor. Math. Phys. 73 (1), 1076 (1987).

    Article  Google Scholar 

  23. V. V. Rumyantsev and S. A. Fedorov, Opt. Spectrosc. 102 (1), 68 (2007).

    Article  ADS  Google Scholar 

  24. A. M. Kosevich, Physical Mechanics of Real Crystals (Naukova Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  25. P. D. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, Nature (London) 450, 1214 (2007).

    Article  ADS  Google Scholar 

  26. D. Hou, B. Ning, J. Wu, Z. Wang, and J. Zhao, Appl. Phys. Lett. 102 (15), 151104 (2013).

    Article  ADS  Google Scholar 

  27. S. B. Papp, K. Beha, P. Del’Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, Optica 1 (1), 10 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rumyantsev.

Additional information

Original Russian Text © V.V. Rumyantsev, S.A. Fedorov, K.V. Gumennik, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 4, pp. 741–747.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, V.V., Fedorov, S.A. & Gumennik, K.V. Polariton excitations in a non-ideal array of microcavities with quantum dots. Phys. Solid State 59, 758–765 (2017). https://doi.org/10.1134/S1063783417040230

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417040230

Navigation