Skip to main content
Log in

Spectroscopy of resonant excitation of exciton luminescence of GaSe–GaTe solid solutions

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The luminescence excitation spectra of localized excitons in GaSe0.85Te0.15 solid solutions have been investigated at the temperature T = 2 K. It has been shown that the excitation spectra of excitons with the localization energy ε > 10 mV exhibit an additional maximum M E located on the low-energy side of the maximum corresponding to the free exciton absorption band with n = 1. It has been found that the shift in the position of the maximum M E in the excitation spectrum with respect to the energy of detected photons increases as the energy of detected photons decreases, i.e., with an increase in the localization energy of excitons. Under the resonant excitation of localized excitons by a monochromatic light from the region of the exciton emission band, in the exciton luminescence spectrum on the low-energy side from the excitation line, there is also a maximum of the luminescence (M L ). The energy distance between the position of the excitation line and the position of the maximum in the luminescence spectrum increases with a decrease in the frequency of the excitation light. The possible mechanisms of the formation of the described structure of the luminescence excitation and exciton luminescence spectra of GaSe0.85Te0.15 have been considered. It has been concluded that the maximum M E in the excitation spectrum and the maximum M L in the luminescence spectrum are attributed to electronic–vibrational transitions with the creation and annihilation of localized excitons, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Adachi, Properties of Semiconductor Alloys: Group IV, III–V, and II–VI Semiconductors (Wiley, Chichester, United Kingdom, 2009).

    Book  Google Scholar 

  2. J. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge University Press, Cambridge, 1979; Mir, Moscow, 1982).

    Google Scholar 

  3. Zh. I. Alferov, E. L. Portnoi, and A. A. Rogachev, Sov. Phys. Semicond. 2 (8), 1001 (1968).

    Google Scholar 

  4. A. A. Klochikhin, S. A. Permogorov, and A. N. Reznitskii, Phys. Solid State 39 (4), 1035 (1997).

    Article  ADS  Google Scholar 

  5. S. Lai and M. V. Klein, Phys. Rev. Lett. 44, 1087 (1980).

    Article  ADS  Google Scholar 

  6. D. Ouadjaout and Y. Marfaing, Phys. Rev. B: Condens. Matter 41, 12096 (1990).

    Article  ADS  Google Scholar 

  7. S. Permogorov and A. Reznitsky, J. Lumin. 52, 201 (1992).

    Article  Google Scholar 

  8. R. Westphäling, T. Breitkopf, S. Bauer, and C. Klingshirn, J. Lumin. 72–74, 980 (1997).

    Article  Google Scholar 

  9. J. J. Hopfield, D. G. Thomas, and R. T. Lynch, Phys. Rev. Lett. 17, 312 (1966).

    Article  ADS  Google Scholar 

  10. R. A. Faulkner and P. J. Dean, J. Lumin. 1–2, 552 (1970).

    Article  Google Scholar 

  11. A. M. Stoneham, Theory of Defects in Solids (Clarendon, Oxford, 1975; Mir, Moscow, 1978), Vol. 1.

    MATH  Google Scholar 

  12. V. Lemos, F. Cerdeira, and L. Gourkov, Solid State Commun. 20, 1101 (1976).

    Article  ADS  Google Scholar 

  13. C. Perez Leon, L. Kador, K. R. Allakhverdiev, T. Baykara, and A. A. Kaya, J. Appl. Phys. 98, 103103 (2005).

    Article  ADS  Google Scholar 

  14. A. G. Abdukadyrov, S. D. Baranovskii, S. Yu. Verbin, E. L. Ivchenko, A. Yu. Naumov, and A. N. Reznitskii, Sov. Phys. JETP 71 (6), 1155 (1990).

    Google Scholar 

  15. J. Camassel, P. Merle, H. Mathieu, and A. Gouskov, Phys. Rev. B: Condens. Matter 19, 1060 (1979).

    Article  ADS  Google Scholar 

  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer-Verlag, New York, 2006).

    Book  Google Scholar 

  17. K. K. Rebane, Elementary Theory of the Vibrational Structure of Impurity Centers in Crystals (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  18. Zero-Phonon Lines and Spectral Hole Burning in Spectroscopy and Photochemistry, Ed. by O. Sild and K. Haller (Springer-Verlag, Berlin, 1988).

  19. O. Madelung, Introduction to Solid-State Theory (Springer-Verlag, Berlin, 1978; Nauka, Moscow, 1985).

    Google Scholar 

  20. P. J. Dean, J. Lumin. 1–2, 398 (1970).

    Article  Google Scholar 

  21. M. Oueslati, C. Benoit á la Guillaume, and M. Zouaghi, Phys. Rev. B: Condens. Matter 37, 3037 (1988).

    Article  ADS  Google Scholar 

  22. E. Cohen and M. D. Sturge, Phys. Rev. B: Condens. Matter 25, 3828 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Starukhin.

Additional information

Original Russian Text © A.N. Starukhin, D.K. Nelson, D.L. Fedorov, D.K. Syunyaev, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 2, pp. 230–235.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starukhin, A.N., Nelson, D.K., Fedorov, D.L. et al. Spectroscopy of resonant excitation of exciton luminescence of GaSe–GaTe solid solutions. Phys. Solid State 59, 236–241 (2017). https://doi.org/10.1134/S1063783417020275

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783417020275

Navigation