Skip to main content
Log in

Specific features of the states of cobalt fluoride in the vicinity of the critical field

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The state of cobalt fluoride in the vicinity of the critical value H c of a longitudinal magnetic field H, in which the magnetic subsystem of a CoF2 crystal with a strong Dzyaloshinskii interaction is transformed from the antiferromagnetic phase into the canted phase, has been investigated taking into account the increasing number of experimental studies related to the use of cobalt fluoride. It has been found that, despite the unusually high magnetic anisotropy of the crystal, the state of the magnetic subsystem at H = H c is extremely sensitive to a small deviation of the vector H from the C 4 axis. Another feature is that the high sensitivity disappears with an increase or decrease in the magnetic field by only a few thousandths of H c . The results of the investigations performed in this work are applicable to magnetically ordered crystals FeF3 and Cu2OSeO3, which, as well as the CoF2 crystals, are characterized by a strong Dzyaloshinskii interaction and a significant magnetic anisotropy. The revealed anomaly in the reduction of the effective magnetic anisotropy is of interest in connection with numerous attempts to decrease the magnetic anisotropy in crystals with giant magnetostriction, which are necessary for the use as sensors and vibrators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. R. Dugan, J. M. Goldberg, W. W. Brennessel, and P. L. Holland, Organometallics 31 (4), 1349 (2012).

    Article  Google Scholar 

  2. Y. T. Teng, S. S. Pramana, J. Ding, T. Wu, and R. Yazami, Electrochim. Acta 107, 301 (2013).

    Article  Google Scholar 

  3. M. J. Armstrong, A. Panneerselvam, C. O’Regan, M. A. Morrisab, and J. D. Holmes, J. Mater. Chem. A 1, 10667 (2013).

    Article  Google Scholar 

  4. C. Y. Lee, Z. Su, K. Lee, H. Tsuchiya, and P. Schmuki, Chem. Commun. (Cambridge) 50, 7067 (2014).

    Article  Google Scholar 

  5. M. C. Leclerc, J. M. Bayne, G. M. Lee, S. I. Gorelsky, M. Vasiliu, I. Korobkov, D. J. Harrison, D. A. Dixon, and R. T. Baker, J. Am. Chem. Soc. 137, 16064 (2015).

    Article  Google Scholar 

  6. J. Tan, L. Liu, S. Guo, H. Hu, Z. Yan, Q. Zhou, Z. Huang, H. Shu, X. Yang, and X. Wang, Electrochim. Acta 168, 225 (2015).

    Article  Google Scholar 

  7. N. F. Kharchenko, V. V. Eremenko, and L. I. Belyi, Sov. Phys. JETP 55 (3), 490 (1982).

    Google Scholar 

  8. K. G. Gurtovoi, A. S. Lagutin, and V. I. Ozhogin, Sov. Phys. JETP 56 (5), 1122 (1982).

    Google Scholar 

  9. Q. Chu, Z. Xing, J. Tian, X. Ren, A. M. Asiri, A. O. Al-Youbi, K. A. Alamry, and X. Sun, J. Power Sources 236, 188 (2013).

    Article  Google Scholar 

  10. J. H. Yang, Z. L. Li, X. Z. Lu, M. H. Whangbo, S. H. Wei, X. G. Gong, and H. J. Xiang, Phys. Rev. Lett. 109, 107203 (2012).

    Article  ADS  Google Scholar 

  11. A. S. Prokhorov and E. G. Rudashevskii, JETP Lett. 10 (4), 110 (1969).

    ADS  Google Scholar 

  12. G. K. Chepurnykh, O. G. Medvedovskaya, and O. A. Nikitina, Phys. Solid State 41 (11), 1877 (1999).

    Article  ADS  Google Scholar 

  13. G. K. Chepurnykh, O. G. Medvedovskaya, and O. A. Nikitina, Low Temp. Phys. 26 (1), 81 (2000).

    Article  ADS  Google Scholar 

  14. Z. Y. Jia, H. F. Liu, F. J. Wang, W. Liu, and C. Y. Ge, Measurement 44, 88 (2011).

    Article  Google Scholar 

  15. J. Tamura, Y. Kawamura, H. Mochiji, N. Sasaki, K. Mizutani, and H. Okawa, Jpn. J. Appl. Phys. 50, 07HC04 (2011).

    Article  Google Scholar 

  16. H. Liu, Z. Jia, F. Wang, and F. Zong, Mechatronics 22, 911 (2012).

    Article  Google Scholar 

  17. K. P. Belov, R. Z. Levitin, and S. A. Nikitin, Fiz. Met. Metalloved. 11, 948 (1961).

    Google Scholar 

  18. S. Legvold, J. Alstad, and J. Rhyne, Phys. Rev. Lett. 10, 509 (1963).

    Article  ADS  Google Scholar 

  19. K. P. Belov, Soros. Obraz. Zh. 3, 15 (1998).

    Google Scholar 

  20. N. Koon, A. Schinder, and F. Carter, Phys. Lett. A 37, 413 (1971).

    Article  ADS  Google Scholar 

  21. J. Liu, T. Zhang, J. Wang, and C. Jiang, Mater. China 4, 002 (2012).

    Google Scholar 

  22. O. G. Medvedovs’ka, T. O. Fedorenko, and G. K. Chepurnykh, in Proceedings of the XI International Conference “Electronics and Applied Physics,” Kyiv, Ukraine, October 21–24, 2015, p. 31.

    Google Scholar 

  23. G. K. Chepurnykh, Sov. Phys. Solid State 10 (6), 1517 (1968).

    Google Scholar 

  24. M. I. Kaganov and G. K. Chepurnykh, Sov. Phys. Solid State 11 (4), 745 (1969).

    Google Scholar 

  25. N. K. Dan’shin, N. M. Kovtun, and M. A. Sdvizhkov, Sov. Phys. Solid State 26 (12), 2185 (1984).

    Google Scholar 

  26. Y. Shapira and J. Zak, Phys. Rev. 170, 503 (1968).

    Article  ADS  Google Scholar 

  27. Y. Shapira, Phys. Rev. 187, 734 (1969).

    Article  ADS  Google Scholar 

  28. Y. Shapira, Phys. Rev. 184, 589 (1969).

    Article  ADS  Google Scholar 

  29. S. V. Peletminskii, Sov. Phys. JETP 10, 321 (1959).

    MathSciNet  Google Scholar 

  30. I. E. Dikshtein, V. V. Tarasenko, and V. G. Shavrov, Sov. Phys. JETP 40 (2), 404 (1974).

    ADS  Google Scholar 

  31. G. K. Chepurnykh, Sov. Phys. Solid State 17 (2), 268 (1975).

    Google Scholar 

  32. G. K. Chepurnykh, Sov. Phys. Solid State 17 (9), 1800 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Chepurnykh.

Additional information

Original Russian Text © O.G. Medvedovskaya, T.A. Fedorenko, G.K. Chepurnykh, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 12, pp. 2350–2354.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedovskaya, O.G., Fedorenko, T.A. & Chepurnykh, G.K. Specific features of the states of cobalt fluoride in the vicinity of the critical field. Phys. Solid State 58, 2438–2442 (2016). https://doi.org/10.1134/S1063783416120209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416120209

Navigation