Skip to main content
Log in

Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green’s function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellipsometry at the Nanoscale, Ed. by M. Losurdo and K. Hingerl (Springer-Verlag, Berlin, 2013).

  2. R. Verre, M. Modreanu, O. Ualibek, D. Fox, K. Fleischer, C. Smith, H. Zhang, M. Pemble, J. F. McGilp, and I. V. Shvets, Phys. Rev. B: Condens. Matter 87, 235428 (2013).

    Article  ADS  Google Scholar 

  3. V. A. Kosobukin, Phys. Solid State 54 (12), 2471 (2012).

    Article  ADS  Google Scholar 

  4. N. Esser, A. M. Frisch, A. Roseler, S. Schintke, C. Goletti, and D. O. Fimland, Phys. Rev. B: Condens. Matter 67, 125306 (2003).

    Article  ADS  Google Scholar 

  5. V. L. Berkovits, V. A. Kosobukin, V. P. Ulin, A. B. Gordeeva, and V. N. Petrov, JETP Lett. 98 (10), 614 (2013).

    Article  Google Scholar 

  6. V. L. Berkovits, V. A. Kosobukin, V. P. Ulin, A. B. Gordeeva, and V. N. Petrov, Surf. Sci. 632, L9 (2015).

    Article  ADS  Google Scholar 

  7. R. Verre, K. Fleischer, O. Ualibek, and I. V. Shvets, Appl. Phys. Lett. 100, 031102 (2012).

    Article  ADS  Google Scholar 

  8. V. L. Berkovits, A. B. Gordeeva, and V. A. Kosobukin, Phys. Solid State 43 (6), 1018 (2001).

    Article  ADS  Google Scholar 

  9. V. L. Berkovits, V. A. Kosobukin, and A. B. Gordeeva, J. Appl. Phys. 118, 245305 (2015).

    Article  ADS  Google Scholar 

  10. P. Weightman, D. S. Martin, R. J. Cole, and T. Farrell, Rep. Prog. Phys. 68, 1251 (2005).

    Article  ADS  Google Scholar 

  11. I. Romero and F. J. G. Abajo, Opt. Express 17, 22012 (2009).

    Article  ADS  Google Scholar 

  12. L. Persechini, R. Verre, N. McAlinden, J. J. Wang, M. Ranjan, S. Facsko, I. V. Shvets, and J. F. McGilp, J. Phys.: Condens. Matter 26, 145302 (2014).

    Google Scholar 

  13. T. Menegotto and F. Horowitz, Appl. Opt. 53, 2853 (2014).

    Article  ADS  Google Scholar 

  14. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Butterworth–Heinemann, Oxford, 1980).

    Google Scholar 

  15. C. Girard and A. Dereux, Rep. Prog. Phys. 59, 657 (1996).

    Article  ADS  Google Scholar 

  16. G. C. Schatz, in Surface Enhanced Raman Scattering, Ed. by R. K. Chang and T. E. Furtak (Plenum, New York, 1982), p. 35.

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Butterworth–Heinemann, Oxford, 1984).

    Google Scholar 

  18. B. N. J. Persson and A. Liebsch, Phys. Rev. B: Condens. Matter 28, 4247 (1983).

    Article  ADS  Google Scholar 

  19. H. L. Lemberg, S. A. Rice, and D. Guidotti, Phys. Rev. B: Solid State 10, 4079 (1974).

    Article  ADS  Google Scholar 

  20. A. G. Banshchikov, V. E. Korsukov, and V. A. Kosobukin, Sov. Phys. Solid State 19 (11), 1939 (1977).

    Google Scholar 

  21. F. L. Galeener and G. Lucovsky, Phys. Rev. Lett. 37, 1474 (1976).

    Article  ADS  Google Scholar 

  22. R. P. Seisyan, V. A. Kosobukin, S. A. Vaganov, M. A. Markosov, T. S. Shamirzaev, K. S. Zhuravlev, A. K. Bakarov, and A. I. Toropov, Phys. Status Solidi C 2, 900 (2005).

    Article  ADS  Google Scholar 

  23. R. Y. Koyama, N. V. Smith, and W. E. Spicer, Phys. Rev. B: Solid State 8, 2426 (1973).

    Article  ADS  Google Scholar 

  24. D. E. Aspnes and A. A. Studna, Phys. Rev. B: Condens. Matter 27, 985 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kosobukin.

Additional information

Original Russian Text © V.A. Kosobukin, A.V. Korotchenkov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 12, pp. 2446–2453.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosobukin, V.A., Korotchenkov, A.V. Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface. Phys. Solid State 58, 2536–2544 (2016). https://doi.org/10.1134/S1063783416120131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416120131

Navigation