Skip to main content
Log in

Relaxation processes in an alternating-current electric field and energy loss mechanisms in hafnium diselenide cointercalated with copper and silver atoms

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Samples based on hafnium diselenide intercalated with atoms of two types, Cu x Ag y HfSe2 at (x + y) ≤ 0.2, have been synthesized for the first time. The frequency dependences of the components of the complex impedance have been measured using impedance spectroscopy in the frequency range from 1 Hz to 10 MHz, and the specific features of the relaxation processes occurring in samples of different compositions have been analyzed. It has been shown that the characteristic times of these processes depend not only on the total concentration of intercalated atoms, but also on the ratio between them. As the total concentration of copper and silver increases, the onset of frequency dispersion of the complex admittance shifts to the higher frequency range. The relative contributions from the conduction and relaxation polarization losses also change depending on the total and element concentrations of the intercalated atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Layered Materials, Ed. by S. M. Auerbach, K. A. Carrado, and P. K. Dutta (Marcel Dekker, New York, 2004), p. 509.

  2. T. Hibma, Intercalation Chemistry (Academic, London, 1982), pp. 285–313.

    Book  Google Scholar 

  3. M. Inoue and H. P. Hughes, Adv. Phys. 38, 565 (1989).

    Article  ADS  Google Scholar 

  4. M. Sasaki, A. Ohnishi, T. Kikuchi, M. Kitaura, K. Shimada, and H. J. Kim, J. Low Temp. Phys. 161, 375 (2010).

    Article  ADS  Google Scholar 

  5. M. S. Whittingham, Solid State Ionics 134, 169 (2000).

    Article  Google Scholar 

  6. M. S. Whittingham, Prog. Solid State Chem. 12, 41 (1978).

    Article  Google Scholar 

  7. L. S. Krasavin, M. V. Spitsyn, and A. N. Titov, Phys. Solid State 39 (1), 52 (1997).

    Article  ADS  Google Scholar 

  8. A. N. Titov, Z. A. Yagafarova, and N. N. Bikkulova, Phys. Solid State 45 (11), 2067 (2003).

    Article  ADS  Google Scholar 

  9. A. N. Titov, Phys. Solid State 51 (4), 714 (2009).

    Article  ADS  Google Scholar 

  10. S. Ahmed and P. A. Lee, J. Phys. D: Appl. Phys. 6, 593 (1973).

    Article  ADS  Google Scholar 

  11. V. G. Pleshchev, N. V. Selezneva, and N. V. Baranov, Phys. Solid State 54 (4), 716 (2012).

    Article  ADS  Google Scholar 

  12. V. G. Pleshchev, N. V. Baranov, N. V. Melnikova, and N. V. Selezneva, Phys. Solid State 54 (7), 1348 (2012).

    Article  ADS  Google Scholar 

  13. H. Wada, O. Amiel, and A. Sato, J. Alloys Compd. 219, 55 (1995).

    Article  Google Scholar 

  14. H. Wada, O. Amiel, and A. Sato, Solid State Ionics 79, 129 (1995).

    Article  Google Scholar 

  15. V. G. Pleshchev, N. V. Selezneva, and N. V. Baranov, Phys. Solid State 55 (1), 21 (2013).

    Article  ADS  Google Scholar 

  16. I. Jokota, J. Phys. Soc. Jpn. 16, 2213 (1961).

    Article  ADS  Google Scholar 

  17. V. G. Pleshchev, N. V. Selezneva, and N. V. Baranov, Phys. Solid State 55 (7), 1377 (2013).

    Article  ADS  Google Scholar 

  18. W. K. Lee, J. F. Liu, and A. S. Nowick, Phys. Rev. Lett. 67, 1559 (1991).

    Article  ADS  Google Scholar 

  19. A. S. Nowick, A. V. Vaysleyb, and I. Kuskovsky, Phys. Rev. B: Condens. Matter 58, 8398 (1998).

    Article  ADS  Google Scholar 

  20. Wei Li, R. W. Schwartz, Appl. Phys. Lett. 89, 242906 (2006).

    Article  ADS  Google Scholar 

  21. N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1971; Mir, Moscow, 1982), Vol. 1.

    Google Scholar 

  22. Yu. M. Poplavko, L. P. Pereverzeva, and I. P. Raevskii, Physics of Active Dielectrics (Southern Federal University, Rostov-on-Don, 2009) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Pleshchev.

Additional information

Original Russian Text © V.G. Pleshchev, N.V. Melnikova, N.V. Baranov, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 9, pp. 1701–1706.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pleshchev, V.G., Melnikova, N.V. & Baranov, N.V. Relaxation processes in an alternating-current electric field and energy loss mechanisms in hafnium diselenide cointercalated with copper and silver atoms. Phys. Solid State 58, 1758–1763 (2016). https://doi.org/10.1134/S1063783416090274

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416090274

Navigation