Skip to main content
Log in

Atomic structure of PtCu nanoparticles in PtCu/C catalysts from EXAFS spectroscopy data

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Deposited electrocatalysts with different distributions of components in PtCu bimetallic nanoparticles involved in their composition were synthesized by simultaneous and sequential reduction of Cu(2+) and Pt(IV) in a carbon suspension. The dependence of the atomic structure of PtCu nanoparticles on the synthesis conditions and the degree of influence of post-treatment was established from analysis of the changes in Fourier transforms of the experimental Pt and Cu EXAFS spectra, as well as the structural parameters obtained by their fitting before and after the treatment of the materials in an acid solution. A technique was proposed for visualizing the atomic structure of synthesized bimetallic nanoparticles. This technique made it possible to determine the character of the distribution of the components over the nanoparticle volume in accordance with the component composition and local atomic structure parameters determined from EXAFS spectroscopy and to obtain the visualization of the distribution of the components in PtCu nanoparticles synthesized by the aforementioned methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Antolini, R. R. Passos, and E. A. Ticianelli, Electrochim. Acta 48, 263 (2002).

    Article  Google Scholar 

  2. M. K. Min, J. H. Cho, K. W. Cho, and H. Kim, Electrochim. Acta 45, 4211 (2000).

    Article  Google Scholar 

  3. L. Xiong, A. M. Kannan, and A. Manthiram, Electrochem. Commun. 4, 898 (2002).

    Article  Google Scholar 

  4. J. R. C. Salgado, E. Antolini, and E. R. Gonzalez, J. Power Sources 141, 13 (2005).

    Article  ADS  Google Scholar 

  5. A. B. Yaroslavtsev, Yu. A. Dobrovol’skii, N. S. Shaglaeva, L. A. Frolova, E. V. Gerasimova, and E. A. Sanginov, Usp. Khim. 81, 191 (2012).

    Article  Google Scholar 

  6. M. R. Tarasevich, Altern. Energ. Ekol. 85, 135 (2010).

    Google Scholar 

  7. L. Xiong and A. Manthiram, J. Electrochem. Soc. 152, A697 (2005).

    Article  Google Scholar 

  8. E. Antolini, J. R. C. Salgado, and E. R. Gonzalez, J. Power Sources 160, 957 (2006).

    Article  Google Scholar 

  9. D. Dobos, Electrochemical Data: A Handbook for Electrochemists in Industry and Universities (Elsevier, Amsterdam, 1975).

    Google Scholar 

  10. K. R. Harikumar, S. Ghosh, and C. N. R. Rao, J. Phys. Chem. A 101, 536 (1997).

    Article  Google Scholar 

  11. J.-J. Wang, Y.-T. Liu, I. L. Chen, Y.-W. Yang, T.-K. Yeh, C. H. Lee, C.-C. Hu, T.-C. Wen, T.-Y. Chen, and T.-L. Lin, J. Phys. Chem. C 118, 2253 (2014).

    Article  Google Scholar 

  12. T. T. Zhao, R. Lin, L. Zhang, C. H. Cao, and J. X. Ma, Acta Phys.-Chim. Sin. 29, 1745 (2013).

    Google Scholar 

  13. D. L. Wang, H. L. L. Xin, R. Hovden, H. S. Wang, Y. C. Yu, D. A. Muller, F. J. DiSalvo, and H. D. Abruna, Nat. Mater. 12, 81 (2013).

    Article  ADS  Google Scholar 

  14. R. Ghosh Chaudhuri and S. Paria, Chem. Rev. 112, 2373 (2012).

    Article  Google Scholar 

  15. H. Zhu, X. Li, and F. Wang, Int. J. Hydrogen Energy 36, 9151 (2011).

    Article  Google Scholar 

  16. S. Wojtysiak, J. Solla-Gullón, P. Dluzewski, and A. Kudelski, Colloids Surf., A 441, 178 (2014).

    Article  Google Scholar 

  17. T. A. Lastovina, V. E. Guterman, and S. S. Manokhin, Altern. Energ. Ekol. 9, 11 (2011).

    Google Scholar 

  18. M. Ammam and E. B. Easton, J. Power Sources 222, 79 (2013).

    Article  Google Scholar 

  19. S. V. Belenov, N. Y. Tabachkova, V. A. Volochaev, and V. E. Guterman, Conf. Proc. Krasnodar (2015), pp. 53–54.

    Google Scholar 

  20. Z. Peng and H. Yang, Nano Today 4, 143 (2009).

    Article  MathSciNet  Google Scholar 

  21. N. Travitsky, T. Ripenbein, D. Golodnitsky, Y. Rosenberg, L. Burshtein, and E. Peled, J. Power Sources 161, 782 (2006).

    Article  Google Scholar 

  22. C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K.-C. Chang, A. P. Paulikas, D. Tripkovic, J. Pearson, K. L. More, N. M. Markovic, and V. R. Stamenkovic, J. Am. Chem. Soc. 133, 14396 (2011).

    Article  Google Scholar 

  23. V. V. Pryadchenko, V. V. Srabionyan, E. B. Mikheykina, L. A. Avakyan, V. Y. Murzin, Y. V. Zubavichus, I. Zizak, V. E. Guterman, and L. A. Bugaev, J. Phys. Chem. C 119 (6), 3217 (2015).

    Article  Google Scholar 

  24. V. E. Guterman, S. V. Belenov, A. V. Guterman, and E. B. Pakhomova, RF Patent 2008113690/04 (April 7, 2008).

    Google Scholar 

  25. D. C. Koningsberger, B. L. Mojet, G. E. van Dorssen, and D. E. Ramaker, Top. Catal. 10, 143 (2000).

    Article  Google Scholar 

  26. D. C. Koningsberger and R. Prins, X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988).

    Google Scholar 

  27. M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, Physica B (Amsterdam) 208–209, 154 (1995).

    Article  Google Scholar 

  28. V. V. Srabionyan, A. L. Bugaev, V. V. Pryadchenko, A. V. Makhiboroda, E. B. Rusakova, L. A. Avakyan, R. Schneider, M. Dubiel, and L. A. Bugaev, J. Non Cryst. Solids 382, 24 (2013).

    Article  ADS  Google Scholar 

  29. V. V. Srabionyan, A. L. Bugaev, V. V. Pryadchenko, L. A. Avakyan, J. A. van Bokhoven, L. A. Bugaev, J. Phys. Chem. Solids 75 (4), 470 (2014).

    Article  Google Scholar 

  30. M. Newville, J. Synchrotron Radiat. 8, 322 (2001).

    Article  Google Scholar 

  31. B. Ravel and M. Newville, J. Synchrotron Radiat. 12, 537 (2005).

    Article  Google Scholar 

  32. C. Kittel and P. McEuen, Introduction to Solid State Physics (Wiley, New York, 2005).

    Google Scholar 

  33. V. V. Pryadchenko, A. D. Galustov, V. V. Srabionyan, and L. A. Bugaev, Opt. Spectrosc. 117 (2), 187 (2014).

    Article  ADS  Google Scholar 

  34. A. V. Poiarkova and J. J. Rehr, Phys. Rev. B: Condens. Matter 59, 948 (1999).

    Article  ADS  Google Scholar 

  35. J. Woltersdorf, A. S. Nepijko, and E. Pippel, Surf. Sci. 106, 64 (1981).

    Article  ADS  Google Scholar 

  36. W. H. Qi, M. P. Wang, and Y. C. Su, J. Mater. Sci. Lett. 21, 877 (2002).

    Article  Google Scholar 

  37. R. Lamber, S. Wetjen, and N. I. Jaeger, Phys. Rev. B: Condens. Matter 51, 10968 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Pryadchenko.

Additional information

Original Russian Text © V.V. Srabionyan, V.V. Pryadchenko, A.A. Kurzin, S.V. Belenov, L.A. Avakyan, V.E. Guterman, L.A. Bugaev, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 4, pp. 730–739.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srabionyan, V.V., Pryadchenko, V.V., Kurzin, A.A. et al. Atomic structure of PtCu nanoparticles in PtCu/C catalysts from EXAFS spectroscopy data. Phys. Solid State 58, 752–762 (2016). https://doi.org/10.1134/S1063783416040247

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416040247

Keywords

Navigation