Skip to main content
Log in

Optical properties of woodpile photonic crystals produced by three-dimensional laser lithography

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Photonic crystals having a woodpile lattice structure with the lateral sizes of up to 200 × 200 μm and lattice period of 1 to 2 μm have been produced by additive three-dimensional laser lithography. The sample structure has been analyzed by optical and scanning electron microscopy. The ideal woodpile consists of “logs” with a rectangular cross section but, in the synthesized structures, the angles are rounded. Calculations of the photonic band structure of woodpiles, in which the cross sections of logs are specified by the Lame curves, have made it possible to estimate the influence of the rounding on the optical properties. Due to significant sample sizes, patterns of optical diffraction in white and monochromatic light have been studied experimentally. The experimental results have been interpreted using calculations of diffraction patterns in the Born approximation of scattering theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature (London) 412, 697 (2001).

    Article  ADS  Google Scholar 

  2. M. Farsari and B. N. Chichkov, Nat. Photonics 3, 450 (2009).

    Article  ADS  Google Scholar 

  3. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, Opt. Express 15, 3426 (2007).

    Article  ADS  Google Scholar 

  4. M. Göppert-Mayer, Ann. Phys. 401, 273 (1931).

    Article  Google Scholar 

  5. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, Adv. Mater. (Weinheim) 17, 541 (2005).

    Article  Google Scholar 

  6. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, Adv. Mater. (Weinheim) 19, 207 (2007).

    Article  Google Scholar 

  7. S. Maruo, K. Ikuta, and H. Korogi, J. Micromech. Syst. 12, 7 (2003).

    Article  Google Scholar 

  8. D. Wu, Q. D. Chen, L. G. Niu, J. N. Wang, J. Wang, and R. Wang, Lab Chip 9, 2391 (2009).

    Article  Google Scholar 

  9. X. Z. Dong, Z. S. Zhao, and X. M. Duan, Appl. Phys. Lett. 91, 124103 (2007).

    Article  ADS  Google Scholar 

  10. C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. N. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, Int. J. Adv. Manuf. Technol. 48, 435 (2010).

    Article  Google Scholar 

  11. I. I. Shishkin, M. V. Rybin, K. B. Samusev, M. F. Limonov, R. V. Kiyan, B. N. Chichkov, Yu. S. Kivshar’, and P. A. Belov, JETP Lett. 99 (9), 531 (2014).

    Article  ADS  Google Scholar 

  12. I. I. Shishkin, K. B. Samusev, M. V. Rybin, M. F. Limonov, R. V. Kiyan, B. N. Chichkov, Yu. S. Kivshar’, and P. A. Belov, Phys. Solid State 56 (11), 2166 (2014).

    Article  ADS  Google Scholar 

  13. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Solid State Commun. 89, 413 (1994).

    Article  ADS  Google Scholar 

  14. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, New Jersey, United States, 2008).

    Google Scholar 

  15. M. V. Rybin, I. I. Shishkin, K. B. Samusev, P. A. Belov, Yu. S. Kivshar, R. V. Kiyan, B. N. Chichkov, and M. F. Limonov, Crystals 5, 61 (2015).

    Article  Google Scholar 

  16. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).

    Article  ADS  Google Scholar 

  17. D. S. Watkins, Fundamentals of Matrix Computations (Wiley, New York, 2002).

    Book  MATH  Google Scholar 

  18. R. D. Meade, A. M. Rappe, K. D. Brommer, T. D. Toannopoulos, and O. L. Alerhand, Phys. Rev. B: Condens. Matter 48, 8434 (1993).

    Article  ADS  Google Scholar 

  19. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).

    Article  ADS  Google Scholar 

  20. A. K. Samusev, K. B. Samusev, M. V. Rybin, M. F. Limonov, E. Yu. Trofimova, D. A. Kurdyukov, and V. G. Golubev, Phys. Solid State 53 (5), 1056 (2011).

    Article  ADS  Google Scholar 

  21. A. V. Baryshev, A. A. Kaplyanskii, V. A. Kosobukin, M. F. Limonov, and A. P. Skvortsov, Phys. Solid State 46 (7), 1331 (2004).

    Article  ADS  Google Scholar 

  22. M. V. Rybin, I. S. Sinev, A. K. Samusev, K. B. Samusev, E. Yu. Trofimova, D. A. Kurdyukov, V. G. Golubev, and M. F. Limonov, Phys. Rev. B: Condens. Matter 87, 125131 (2013).

    Article  ADS  Google Scholar 

  23. J. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  24. A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (Dover, New York, 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Samusev.

Additional information

Original Russian Text © K.B. Samusev, M.V. Rybin, A.K. Samusev, M.F. Limonov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 12, pp. 2420–2428.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samusev, K.B., Rybin, M.V., Samusev, A.K. et al. Optical properties of woodpile photonic crystals produced by three-dimensional laser lithography. Phys. Solid State 57, 2494–2501 (2015). https://doi.org/10.1134/S1063783415120306

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415120306

Keywords

Navigation