Skip to main content
Log in

Formation of fluorine-containing defects and nanocrystals in SiO2 upon implantation with fluorine, silicon, and germanium ions: Numerical simulation and photoluminescence spectroscopy

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The incorporation of fluorine atoms into the silicon dioxide lattice upon F+ ion implantation and the formation of silicon (germanium) nanocrystals in SiO2 upon Si+ (Ge+) ion implantation have been numerically simulated. The calculations for F have been performed by the density functional theory (DFT) method; the calculations for Si and Ge have been carried out by combining the DFT (in the cluster approximation) and Monte Carlo methods. The energy gain of the fluorine atom attachment to one of silicon atoms with the formation of a nonbridging oxygen hole center (NBOHC) and an energy level appearing in the band gap has been demonstrated. In the case of ion implantation, the simulation at a dissolved Si (Ge) atom concentration of ∼2 at % has revealed the formation of nanocrystals (NCs) with an average size of ∼1 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Pershenkov, V. D. Popov, and A. V. Shal’nov, Surface Radiation Effects in Integrated Microcircuits (Energoatomizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  2. D. V. Nikolaev, I. V. Antonova, O. V. Naumova, V. P. Popov, and S. A. Smagulova, Semiconductors 37 (4), 426 (2003).

    Article  ADS  Google Scholar 

  3. J. J. Yang, M. D. Picket, X. Li, D. R. Steward, and R. S. Williams, Nat. Nanotechnol. 3, 429 (2008).

    Article  Google Scholar 

  4. D. I. Tetelbaum, N. D. Abrosimova, A. N. Mikhaylov, and O. P. Smelova, in Abstracts of the VII International Conference “Silicon-2010,” Nizhny Novgorod, July 6–9, 2010, p. 109.

  5. C. M. S. Rauthan, G. S. Virdi, B. C. Pathak, and A. J. Karthigeyan, Appl. Phys. 83, 3668 (1998).

    Article  Google Scholar 

  6. O. P. Gus’kova, V. M. Vorotyntsev, M. A. Faddeev, and N. D. Abrosimova, Vestn. Nizhegorodsk. Gos. Univ. 1, 43 (2013).

    Google Scholar 

  7. E. L. Pankratov, O. P. Gus’kova, M. N. Drozdov, N. D. Abrosimova, and V. M. Vorotyntsev, Semiconductors 48 (5), 612 (2014).

    Article  ADS  Google Scholar 

  8. E. V. Chuprunov, A. F. Khokhlov, and M. A. Faddeev, Crystallography (IFML, Moscow, 2000) [in Russian].

    Google Scholar 

  9. W. Kohn, Nobel Lecture (The Nobel Foundation, Stockholm, 1999).

    Google Scholar 

  10. J. P. Perdew and Y. Wang, Phys. Rev. B: Condens. Matter 45, 13244 (1992).

    Article  ADS  Google Scholar 

  11. Quantum ESPRESSO home page http://www.quantumespresso.org/

  12. E. Zhang, J. Sun, Z. Zhang, C. Qian, J. Jiang, X. Wang, Y. En, H. Luo, Q. Shi, and X. Zhang, Semicond. Sci. Technol. 21, 287 (2006).

    Article  ADS  Google Scholar 

  13. N. D. Abrosimova, M. N. Mineev, V. K. Kiselev, and O. P. Gus’kova, in Abstracts of the First Russian-Belorussian Scientific and Technical Conference “Element Base of the National Radio Electronics,” Nizhny Novgorod, Russia, September 11-14, 2013, Part 2, p 71.

  14. N. Metropolis, A. Rosenbluth, M. Roesenbluth, A. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  15. M. J. Frisch, G. W. Trucks, and Sh. B. Schlegel, Gaussian 03, Revision C.01 (Gaussian, Wallingford, Connecticut, 2004).

    Google Scholar 

  16. Yu. I. Gorlov, V. A. Zaets, and A. A. Chuiko, Theor. Exp. Chem. 22 (5), 509 (1987).

    Article  Google Scholar 

  17. A. Chatterjee, T. Iwasaki, and T. Ebina, Int. J. Mol. Sci. 2, 40 (2001).

    Article  Google Scholar 

  18. T. V. Perevalov, A. V. Shaposhnikov, and V. A. Gritsenko, Izv. Ross. Gos. Ped. Univ. im. A. I. Gertsena 79, 164 (2009).

    Google Scholar 

  19. Monte Carlo Methods in Statistical Physics, Ed. by K. Binder (Springer-Verlag, Heidelberg, 1979; Mir, Moscow, 1982).

  20. A. V. Zverev, I. G. Neizvestnyi, N. L. Shvarts, and Z. S Sh. Yanovitskaya, Nanotechnol. Russ. 3 (5–6), 368 (2008).

    Article  Google Scholar 

  21. A. F. Leier, L. N. Safronov, and G. A. Kachurin, Semiconductors 33 (4), 389 (1999).

    Article  ADS  Google Scholar 

  22. A. Barranco, F. Yubero, J. P. Espinos, J. P. Holgado, A. Caballero, R. Gonzalez-Elipe, and J. A. Mejias, Vacuum 67, 491 (2002).

    Article  Google Scholar 

  23. K. Kajihara, L. Skuja, M. Hirano, and H. Hosono, Appl. Phys. Lett. 79, 1757 (2001).

    Article  ADS  Google Scholar 

  24. T. Gao, S. Tong, X. Wu, X. Bao, and G. G. Siu, Phys. Lett. A 253, 234 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Vorotyntsev.

Additional information

Original Russian Text © O.P. Gus’kova, V.M. Vorotyntsev, N.D. Abrosimova, A.N. Mikhaylov, D.I. Tetelbaum, E.L. Shobolov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 11, pp. 2106–2111.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gus’kova, O.P., Vorotyntsev, V.M., Abrosimova, N.D. et al. Formation of fluorine-containing defects and nanocrystals in SiO2 upon implantation with fluorine, silicon, and germanium ions: Numerical simulation and photoluminescence spectroscopy. Phys. Solid State 57, 2164–2169 (2015). https://doi.org/10.1134/S106378341511013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341511013X

Keywords

Navigation