Skip to main content
Log in

Magnetoresistance anisotropy and scaling in textured high-temperature superconductor Bi1.8Pb0.3Sr1.9Ca2Cu3O x

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The magnetoresistance of the textured high-temperature superconductor (HTSC) Bi1.8Pb0.3Sr1.9Ca2Cu3O x + Ag has been studied at different directions of the transport current I and external magnetic field H with respect to crystallographic directions of HTSC crystallites. When I and H are oriented along the ab planes of crystallites and φ is the angle between H and I, the anisotropic part of the magnetoresistance follows the functional dependence sin2φ, which is characteristic of vortex flows under Lorentz forces. The magnetoresistance R at H parallel to the c axis of crystallites (H || c) is higher than R at H || ab for both cases of I || c and I || ab. The anisotropy coefficient γ ≈ 2.3 has been estimated from the scaling of the dependences R(H) measured at H || c and H || ab. The inclusion of the magnetic field induced by the transport current allows scaling of the dependences R(H) at different values of I. A qualitative picture of the current flow along the c axis of crystallites in the textured HTSC has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, Nature (London) 414, 368 (2001).

    Article  ADS  Google Scholar 

  2. W. V. Hassenzahl, D. W. Hazelton, B. K. Johnson, P. Komarek, M. Noe, and C. T. Reis, Proc. IEEE 92, 1655 (2004).

    Article  Google Scholar 

  3. A. P. Malozemoff, Annu. Rev. Mater. Res. 42, 373 (2012).

    Article  ADS  Google Scholar 

  4. J. X. Jin, Y. Xin, Q. L. Wang, Y. S. He, C. B. Cai, Y. S. Wang, and Z. M. Wang, IEEE Trans. Appl. Supercond. 24, 1 (2014).

    Google Scholar 

  5. O. V. Kharissova, E. M. Kopnin, V. V. Maltsev, N. I. Leonyuk, L. M. Léon-Rossano, I. Yu. Pinus, and B. I. Kharisov, Crit. Rev. Solid State Mater. Sci. 39, 253 (2014).

    Article  ADS  Google Scholar 

  6. Q. Y. Hu, R. M. Schalk, Sh. W. Weber, Sh. K. Liu, R. K. Wang, C. Czurda, and S. X. Dou, J. Appl. Phys. 78, 1123 (1995).

    Article  ADS  Google Scholar 

  7. G. S. Han, Phys. Rev. B: Condens. Matter 52, 1309 (1995).

    Article  ADS  Google Scholar 

  8. B. Hensel, G. Grasso, and R. Flükiger, Phys. Rev. B: Condens. Matter 51, 15456 (1995).

    Article  ADS  Google Scholar 

  9. G. Desgardin, I. Monot, and B. Raveau, Supercond. Sci. Technol. 12, R115 (1999).

    Article  ADS  Google Scholar 

  10. M. I. Petrov, D. A. Balaev, I. L. Belozerova, A. D. Vasil’ev, D. M. Gokhfel’d, O. N. Mart’yanov, S. I. Popkov, and K. A. Shaikhutdinov, Tec Sh. Phys. Lett. 33 (9), 740 (2007).

    Article  Google Scholar 

  11. M. I. Petrov, I. L. Belozerova, K. A. Shaikhutdinov, D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, D. A. Vasilyev, and O. N. Martyanov, Supercond. Sci. Technol. 21, 105019 (2008).

    Article  ADS  Google Scholar 

  12. S. I. Vedeneev, A. G. M. Jansen, and P. Wyder, Phys. Rev. B: Condens. Matter 67, 052202 (2003).

    Article  ADS  Google Scholar 

  13. A. Kilic, K. Kilic, S. Senoussi, and K. Demir, Physica C (Amsterdam) 294, 203 (1998).

    Article  ADS  Google Scholar 

  14. J. H. Cho, M. P. Maley, J. O. Willis, J. Y. Coulter, L. N. Bulaevskii, P. Haldar, and L. R. Motowidlo, Appl. Phys. Lett. 64, 3030 (1994).

    Article  ADS  Google Scholar 

  15. G. S. Han and C. K. Ong, Phys. Rev. B: Condens. Matter 56, 11299 (1997).

    Article  ADS  Google Scholar 

  16. B. Lehndorff, M. Hortig, and H. Piel, Supercond. Sci. Technol. 11, 1261 (1998).

    Article  ADS  Google Scholar 

  17. M. I. Petrov, T. N. Tetyueva, L. I. Kveglis, A. A. Efremov, G. M. Zeer, K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and S. G. Ovchinnikov, Tec Sh. Phys. Lett. 29 (12), 986 (2003).

    Article  Google Scholar 

  18. K. A. Shaykhutdinov, D. A. Balaev, S. I. Popkov, A. D. Vasilyev, O. N. Martyanov, and M. I. Petrov, Supercond. Sci. Technol. 20, 491 (2007).

    Article  ADS  Google Scholar 

  19. M. I. Petrov, D. A. Balaev, I. L. Belozerova, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and O. N. Mart’yanov, Tec Sh. Phys. 54 (8), 1130 (2009).

    Article  Google Scholar 

  20. A. G. Mamalis, S. G. Ovchinnikov, M. I. Petrov, D. A. Balaev, K. A. Shaihutdinov, D. M. Gohfeld, S. A. Kharlamova, and I. N. Vottea, Physica C (Amsterdam) 364–365, 174 (2001).

    Article  Google Scholar 

  21. A. N. Lavrov and L. P. Kozeeva, Physica C (Amsterdam) 248, 365 (1995).

    Article  ADS  Google Scholar 

  22. W. K. Kwok, U. Welp, G. W. Crabtree, K. G. Vandervoort, R. Hulscher, and J. Z. Liu, Phys. Rev. Lett. 64, 966 (1990).

    Article  ADS  Google Scholar 

  23. K. Kadowaki, Y. Songliu, and K. Kitazawa, Supercond. Sci. Technol. 7, 519 (1994).

    Article  ADS  Google Scholar 

  24. D. A. Balaev, S. I. Popkov, S. V. Semenov, A. A. Bykov, K. A. Shaykhutdinov, D. M. Gokhfeld, and M. I. Petrov, Physica C (Amsterdam) 470, 61 (2010).

    Article  ADS  Google Scholar 

  25. D. A. Balaev, A. A. Bykov, S. V. Semenov, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 53 (5), 922 (2011).

    Article  ADS  Google Scholar 

  26. G. Blatter, V. B. Geshkenbein, and A. I. Larkin, Phys. Rev. Lett. 68, 875 (1992).

    Article  ADS  Google Scholar 

  27. Z. Hao and J. R. Clem, Phys. Rev. B: Condens. Matter 46, 5853 (1992).

    Article  ADS  Google Scholar 

  28. A. Diaz, J. Maza, and F. Vidal, Phys. Rev. B: Condens. Matter 55, 1209 (1997).

    Article  ADS  Google Scholar 

  29. H. Kliem, A. Weyers, and J. Lijtzner, J. Appl. Phys. 69, 1534 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Gokhfel’d.

Additional information

Original Russian Text © D.M. Gokhfel’d, D.A. Balaev, S.V. Semenov, M.I. Petrov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 11, pp. 2090–2094.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokhfel’d, D.M., Balaev, D.A., Semenov, S.V. et al. Magnetoresistance anisotropy and scaling in textured high-temperature superconductor Bi1.8Pb0.3Sr1.9Ca2Cu3O x . Phys. Solid State 57, 2145–2150 (2015). https://doi.org/10.1134/S1063783415110128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415110128

Keywords

Navigation