Skip to main content
Log in

Residual stresses in sapphire rods grown by the Stepanov method

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The residual stresses in cylindrical [0001] sapphire crystals have been studied using the polarization-optical method. The angle between the optical axes 2V and the difference in the normal components of the tensor of elastic residual stresses (σφ − σ r ) have been determined from the isogyre divergence. It has been found that a tangential tensile stress of no more than 20 MPa acts on the ingot surface. The residual stresses have been compared with the calculated thermoelastic stresses generated during the crystal growth in a given heating zone. It has been shown that the determined pattern of residual stresses can be caused by thermoelastic stresses developing in the immediate vicinity of the crystallization front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Shtukenberg and Yu. O. Punin, Optically Anomalous Crystals (Nauka, St. Petersburg, 2004; Wiley, New York, 2007).

    Google Scholar 

  2. N. Yu. Ikornikova, Tr. Inst. Kristallogr., No. 8, 193 (1953).

    Google Scholar 

  3. V. L. Indenbom and G. E. Tomilovskii, Sov. Phys. Crystallogr. 2(1), 183 (1957).

    Google Scholar 

  4. V. L. Indenbom and G. E. Tomilovskii, Sov. Phys. Crystallogr. 3, 599 (1958).

    Google Scholar 

  5. Modern Crystallography, Ed. by D. E. Temkin (Nauka, Moscow, 1980), Vol. 3 [in Russian].

    Google Scholar 

  6. Kh. S. Bagdasarov, High-Temperature Crystallization from Melt (Fizmatlit, Moscow, 2004) [in Russian].

    Google Scholar 

  7. A. V. Denisov, V. M. Krymov, and Yu. O. Punin, Phys. Solid State 49(7), 472 (2007).

    Article  ADS  Google Scholar 

  8. E. R. Dobrovinskaya, L. A. Litvinov, and V. V. Pishchik, Encyclopedia of Sapphire (Institute for Single Crystals, National Academy of Sciences of Ukraine, Kharkov, 2004) [in Russian].

    Google Scholar 

  9. I. E. Zino and E. A. Tropp, Asymptotic Methods in Problems of the Theory of Heat Conduction and Thermoelasticity (Leningrad State University, Leningrad, 1978) [in Russian].

    Google Scholar 

  10. E. V. Galaktionov and E. A. Tropp, Izv. Akad. Nauk SSSR, Ser. Fiz. 40, 1399 (1976).

    Google Scholar 

  11. P. I. Antonov, S. I. Bakholdin, E. V. Galaktionov, and E. A. Tropp, Izv. Akad. Nauk SSSR, Ser. Fiz. 44, 255 (1980).

    Google Scholar 

  12. S. I. Bakholdin, E. V. Galaktionov, and E. A. Tropp, Tech. Phys. 55(11), 1547 (2010).

    Article  Google Scholar 

  13. V. K. Prokopov, Prikl. Mat. Mekh. 12(2), 135 (1949).

    MathSciNet  Google Scholar 

  14. A. I. Lur’e, Three-Dimensional Problems of the Theory of Elasticity (GITTL, Moscow, 1955; Wiley, New York, 1964).

    Google Scholar 

  15. S. I. Bakholdin, E. V. Galaktionov, and E. A. Tropp, Tech. Phys. 59(8), 1105 (2014).

    Article  Google Scholar 

  16. P. I. Antonov, V. M. Krymov, Yu. G. Nosov, and I. L. Shul’pina, Izv. Akad. Nauk, Ser. Fiz. 68(6), 777 (2004).

    Google Scholar 

  17. L. L. Kuandykov, S. I. Bakholdin, I. L. Shul’pina, and P. I. Antonov, Izv. Akad. Nauk, Ser. Fiz. 68(6), 784 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Krymov.

Additional information

Original Russian Text © V.M. Krymov, Yu.G. Nosov, S.I. Bakholdin, E.V. Galaktionov, V.N. Maslov, E.A. Tropp, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 4, pp. 727–732.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krymov, V.M., Nosov, Y.G., Bakholdin, S.I. et al. Residual stresses in sapphire rods grown by the Stepanov method. Phys. Solid State 57, 746–751 (2015). https://doi.org/10.1134/S1063783415040150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415040150

Keywords

Navigation