Skip to main content
Log in

Second-order and third-order elastic constants of B4C ceramics

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The linear and nonlinear elastic properties of B4C boron carbide ceramics have been studied. The second-order elastic constants and other parameters of the theory of elasticity in the linear approximation have been calculated based on the experimentally measured density and velocity values of longitudinal and shear bulk acoustic waves in the samples. The Thurston-Brugger method has been used to determine the third-order elastic constants of B4C. To achieve this, we have measured the relative changes of the longitudinal and shear bulk acoustic wave velocities depending on the uniaxial compression applied to the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. W. Kim, Y. H. Koh, and H. E. Kim, J. Mater. Res. 15, 2431 (2000).

    Article  ADS  Google Scholar 

  2. J. Deng, J. Zhou, Y. Feng, and Z. Ding, Ceram. Int. 28, 425 (2002).

    Article  Google Scholar 

  3. K. H. Kim, J. H. Chae, J. S. Park, J. P. Ahn, and K. B. Shim, J. Ceram. Process. Res. 10, 716 (2009).

    Google Scholar 

  4. A. R. Sury, C. Subramanian, J. K. Sonber, and T. S. R. Ch. Murthy, Int. Mater. Rev. 55, 4 (2010).

    Article  Google Scholar 

  5. F. The’venot, J. Eur. Ceram. Soc. 6(4), 205 (1990).

    Article  Google Scholar 

  6. V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, J. Am. Ceram. Soc. 94, 3605 (2011).

    Article  Google Scholar 

  7. W. H. Goust and E. B. Royce, J. Appl. Phys. 42, 276 (1971).

    Article  ADS  Google Scholar 

  8. W. H. Goust, A. C. Holt, and E. B. Royce, J. Appl. Phys. 44, 550 (1973).

    Article  ADS  Google Scholar 

  9. T. J. Vogler, W. D. Reinhart, and L. C. Chhabildas, J. Appl. Phys. 95, 4173 (2004).

    Article  ADS  Google Scholar 

  10. Y. Zhang, T. Mashimo, Y. Uemura, and M. Uchino, J. Appl. Phys. 100, 113536 (2006).

    Article  ADS  Google Scholar 

  11. J. H. Gieske, T. L. Aselageand, and D. Emin, AIP Conf. Proc. 231, 376 (1991).

    Article  ADS  Google Scholar 

  12. A. Yu. Dolgoborodov and K. M. Voskoboinikov, Tech. Phys. 38(2), 158 (1993).

    Google Scholar 

  13. G. S. Karumidze, Sh. Sh. Shavelashvili, and V. B. Chkhikvishvili, Semiconductors 28(12), 1192 (1994).

    ADS  Google Scholar 

  14. K. J. McClellan, F. Chu, J. M. Roper, and I. Shindo, J. Mater. Sci. 36, 3403 (2001).

    Article  ADS  Google Scholar 

  15. S. B. Lee, D. M. Bylander, and L. Kleinman, Phys. Rev. B: Condens. Matter 45, 3245 (1992).

    Article  ADS  Google Scholar 

  16. M. H. Manghnani, Y. Wang, F. Li, P. Zinin, and W. Rafaniello, in Science and Technology of High Pressure, Ed. by M. H. Manghnani, W. J. Nekkis, and M. F. Nicol (Hyderabad University Press, Hyderabad, India, 2000), p. 945.

  17. S. P. Dodd, G. A. Saunders, and B. James, J. Mater. Sci. 37, 2731 (2002).

    Article  ADS  Google Scholar 

  18. V. Domnich, Y. Gogotsi, M. Trenary, and T. Tanaka, Appl. Phys. Lett. 81, 3783 (2002).

    Article  ADS  Google Scholar 

  19. V. Kulikovsky, C. Bohac, D. Stranyanek, and L. Jastrabik, Diamond Relat. Mater. 18, 27 (2009).

    Article  ADS  Google Scholar 

  20. O. V. Rudenko, Phys.—Usp. 49(1), 69 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  21. L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  22. R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604 (1964).

    Article  ADS  Google Scholar 

  23. R. N. Thurston, in Physical Acoustics: Principles and Methods, Ed. by W. Mason (Academic, New York, 1964; Mir, Moscow, 1966), Vol. 1, Part A, p. 13.

  24. V. Prokhorov, S. Perfilov, A. Useinov, K. Veprincev, C. Gnidash, and R. Kuftyrev, Mach., Technol., Mater. 12, 21 (2013).

    Google Scholar 

  25. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka, Moscow, 1991; American Institute of Physics, New York, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Prokhorov.

Additional information

Original Russian Text © V.D. Blank, V.M. Prokhorov, B.P. Sorokin, G.M. Kvashnin, A.V. Telichko, G.I. Gordeev, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 8, pp. 1523–1527.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blank, V.D., Prokhorov, V.M., Sorokin, B.P. et al. Second-order and third-order elastic constants of B4C ceramics. Phys. Solid State 56, 1574–1578 (2014). https://doi.org/10.1134/S1063783414080046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414080046

Keywords

Navigation