Skip to main content
Log in

Elasticity, anelasticity, and microplasticity of directionally crystallized aluminum-germanium alloys

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The structure, Young’s modulus defect, and internal friction in aluminum-germanium alloys have been studied under conditions of longitudinal elastic vibrations with a strain amplitude in the range of 10−6−3 × 10−4 at frequencies about 100 kHz. The ribbon-shaped samples of the alloys with the germanium content from 35 to 64 wt % have been produced by drawing from the melt by the Stepanov method at a rate of 0.1 mm/s. It has been shown that the dependences of the Young’s modulus defect, logarithmic decrement, and vibration stress amplitude on the germanium content in the alloy at a constant strain amplitude have an extremum at 53 wt % Ge. This composition corresponds to the eutectic composition. The dependences of the Young’s modulus defect, the decrement, and vibration stress amplitude at a constant microstrain amplitude have been explained by the vibrational displacements of dislocations, which depend on the alloy structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. M. Hammad, K. A. Padmanabhan, G. Van Tendeloo, and T. R. Anantharaman, Z. Metallkd. 78, 103 (1987).

    Google Scholar 

  2. D. Mitlin, V. Radmilovic, and J. W. Morris, Jr., Metall. Mater. Trans. A 31, 2698 (2000).

    Google Scholar 

  3. D. Mitlin, V. Radmilovic, U. Dahmen. and J. W. Morris, Jr., Metall. Mater. Trans. A 32, 197 (2001).

    Article  Google Scholar 

  4. D. Mitlin, V. Radmilovic, J. W. Morris Jr., and U. Dahmen, Metall. Mater. Trans. A 34, 735 (2003).

    Google Scholar 

  5. M. V. Castro Riglos, A. J. Tolley, and V. Radmilovic, in Proceedings of the International Congress of Science and Technology of Metallurgy and Materials (SAM/CONAMET), San Nicolás, Argentina, September 4–7, 2007, p. 1893.

  6. L. I. Derkachenko, B. N. Korchunov, S. P. Nikanorov, V. N. Osipov, and V. V. Shpeizman, Phys. Solid State 56(3), 527 (2014).

    Article  ADS  Google Scholar 

  7. P. I. Antonov, L. M. Zatulovskii, A. S. Kostygov, D. I. Levinzon, S. P. Nikanorov, V. V. Peller, V. A. Tatarchenko, and V. S. Yuferev, Production of Profiled Single Crystals and Articles by the Stepanov Method (Nauka, Leningrad, 1981) [in Russian].

    Google Scholar 

  8. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dislocation Anelasticity of Crystals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  9. S. N. Golyandin, B. K. Kardashev, S. B. Kustov, S. P. Nikanorov, P. Devos, J. Cornelis, and R. De Batist, Phys. Status Solidi A 147, 111 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Nikanorov.

Additional information

Original Russian Text © B.K. Kardashev, B.N. Korchunov, S.P. Nikanorov, V.N. Osipov, V.Yu. Fedorov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 7, pp. 1312–1315.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kardashev, B.K., Korchunov, B.N., Nikanorov, S.P. et al. Elasticity, anelasticity, and microplasticity of directionally crystallized aluminum-germanium alloys. Phys. Solid State 56, 1363–1367 (2014). https://doi.org/10.1134/S1063783414070191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414070191

Keywords

Navigation