Skip to main content
Log in

Nonlinear magnetoelectric effect in composite multiferroics

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The theoretical and experimental studies of the nonlinear magnetoelectric effect in composite multiferroics in the low-frequency spectral region and in the electromechanical resonance region have been performed. It has been shown that such structures demonstrate a nonlinear magnetoelectric effect, which is quadratic in ac magnetic field strength at weak magnetic fields. In the region of the electromechanical resonance, the resonance excitation of an electric field occurs by means of ac magnetic field at a frequency lower than the resonance frequency by a factor of two. In the low-frequency spectral region, there is a difference of amplitude values of two neighboring voltage maxima due to the superposition of signals from the linear and nonlinear effects, and the difference is proportional to the dc magnetic field strength in weak fields. The results of the experimental study of the two-layer permendur-lead zirconate titanate structure are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Smolenskii and I. E. Chupis, Sov. Phys.-Usp. 25(7), 475 (1982).

    Article  ADS  Google Scholar 

  2. Yu. N. Venevtsev, V. V. Gagulin, and V. N. Lyubimov, Ferroelectromagnets (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  3. H. Schmid, Ferroelectrics 162, 317 (1994).

    Article  Google Scholar 

  4. A. P. Pyatakov and A. K. Zvezdin, Phys.-Usp. 55(6), 557 (2012).

    Article  ADS  Google Scholar 

  5. C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).

    Article  ADS  Google Scholar 

  6. J. Y. Zhai, Z. P. Xing, S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 88, 062510 (2006).

    Article  ADS  Google Scholar 

  7. D. A. Filippov, M. I. Bichurin, V. M. Petrov, V. M. Laletin, N. N Poddubnaya, and G. Srinivasan, Tech. Phys. Lett. 30(1), 6 (2004).

    Article  ADS  Google Scholar 

  8. D. A. Filippov, M. I. Bichurin, V. M. Petrov, V. M. Laletin, and G. Srinivasan, Phys. Solid State 46(9), 1674 (2004).

    Article  ADS  Google Scholar 

  9. G. Srinivasan, C. P. DeVreugd, V. M. Laletin, N. Paddubnaya, M. I. Bichurin, V. M. Petrov, and D. A. Filippov, Phys. Rev. B: Condens. Matter 71, 184423 (2005).

    Article  ADS  Google Scholar 

  10. D. A. Filippov, V. M. Laletin, and G. Srinivasan, Tech. Phys. 57(1), 44 (2012).

    Article  Google Scholar 

  11. K. P. Belov, Magnetostriction Phenomena and Their Technical Applications (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  12. D. A. Filippov, V. M. Laletin, and T. A. Galichyan, Phys. Solid State 55(9), 1840 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Filippov.

Additional information

Original Russian Text © D.A. Filippov, V.M. Laletin, T.O. Firsova, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 5, pp. 944–948.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, D.A., Laletin, V.M. & Firsova, T.O. Nonlinear magnetoelectric effect in composite multiferroics. Phys. Solid State 56, 980–984 (2014). https://doi.org/10.1134/S1063783414050096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414050096

Keywords

Navigation