Skip to main content
Log in

Fine structures and switching of electrical conductivity in labyrinth silver films on sapphire

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Changes in electrical resistance of silver films were measured in the range from 1013 to 103 Ω during thermal deposition on sapphire in a high vacuum, after the deposition over time, and under an applied voltage. The dependences of the electrical resistance of the films on their thickness and deposition rate were determined. It was established that, with an increase in the film thickness from 2 to 10 nm during the deposition at rates of 0.6 and 0.1 Å/s, the resistance decreases by 7.5 and 4 orders of magnitude, respectively. The measured dependences of the resistance on the deposition time were found to be close to exponential. The room-temperature resistance of 10-nm-thick films deposited at different rates changed spontaneously by 3–4 orders of magnitude in different ways: the resistance of the slowly deposited films spontaneously increased, whereas in the rapidly deposited films, it spontaneously decreased. After fine annealing, the steady-state resistance changed also differently: it increased by 2 orders of magnitude in the former case and by 9 orders of magnitude in the latter case. Under voltages above 5 V, the resistance of the rapidly deposited films abruptly decreased from ∼1012 to ∼106 Ω, and these films became ohmic. After fine annealing, they became again high-ohmic. Under voltages above 5 V, the high-ohmic films thus obtained became again low-ohmic. This cycle of electrical conductivity switching was reproduced many times. The observed phenomena were explained in the framework of the hypothesis of the formation of fine metastable structures in channels of labyrinth films, namely, protrusions and bridges that bring together the boundaries of islands and connect them into conducting clusters, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Chopra, Thin Film Phenomena (Wiley, New York, 1969; Mir, Moscow, 1972).

    Google Scholar 

  2. A. Kiesowa, J. E. Morris, C. Radehaus, and A. Heilmann, J. Appl. Phys. 94(10), 6988 (2003).

    Article  ADS  Google Scholar 

  3. A. Kapitulnik and G. Deutscher, Phys. Rev. Lett. 49(19), 1444 (1982).

    Article  ADS  Google Scholar 

  4. S. Wagner and A. Pundt, Phys. Rev. B: Condens. Matter 78, 155131 (2008).

    Article  ADS  Google Scholar 

  5. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer-Verlag, Berlin, 1984).

    Google Scholar 

  6. E. I. Tochitskii, Crystallization and Heat Treatment of Thin Films (Nauka i Tekhnika, Minsk, 1978) [in Russian].

    Google Scholar 

  7. K. H. Ernst, A. Ludviksson, R. Zhang, and C. N. Campbell, Phys. Rev. B: Condens. Matter 47(20), 13782 (1993).

    Article  ADS  Google Scholar 

  8. Yu. S. Barash, Van der Waals Forces (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  9. W. W. Mullins, J. Appl. Phys. 28(3), 333 (1957).

    Article  ADS  Google Scholar 

  10. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford, Singapore, 2014).

    Google Scholar 

  11. V. M. Ievlev, L. I. Trusov, and V. A. Kholmyanskii, Structural Transformations in Thin Films (Metallurgiya, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Przhibel’skii.

Additional information

Original Russian Text © T.A. Vartanyan, I.A. Gladskikh, N.B. Leonov, S.G. Przhibel’skii, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 4, pp. 783–789.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vartanyan, T.A., Gladskikh, I.A., Leonov, N.B. et al. Fine structures and switching of electrical conductivity in labyrinth silver films on sapphire. Phys. Solid State 56, 816–822 (2014). https://doi.org/10.1134/S1063783414040349

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414040349

Keywords

Navigation