Skip to main content
Log in

On the fermi velocity and static conductivity of epitaxial graphene

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The models of the energy density of states of a metallic or semiconductor substrate, which does not further lead to divergences, have been proposed to calculate the characteristics of epitaxial graphene. The Fermi velocity of epitaxial graphene formed on a metal has been shown to be greater than that in free-standing graphene irrespective of the position of the Fermi level. On the contrary, the Fermi velocity of graphene formed on a semiconductor is lower so that the lower is the Fermi velocity, the closer is the Fermi level to the center of the band gap of the semiconductor. The zero-temperature static conductivity σ of epitaxial graphene has been calculated according to the Kubo-Greenwood formula. The quantity σm of undoped graphene on metal has been shown to decrease with an increase in the deviation of the Dirac point ɛD (which coincides with the Fermi level of the system) from the center of the conduction band of the substrate. In the case of the semiconductor substrate, the static conductivity σsc turns out to be nonzero and amounts to σsc = 2e 2ħ-only under the condition ɛF =ɛ′D, where ɛ′D is the Dirac-point energy renormalized by the interaction with the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  2. D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).

    Article  ADS  Google Scholar 

  3. S. Das Sarma, S. Adam, E. H. Huang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).

    Article  ADS  Google Scholar 

  4. J. Haas, W.A. de Heer, and E. H. Conrad, J. Phys.: Condens. Matter 20, 323202 (2008).

    Google Scholar 

  5. Y. H. Wu, T. Yu, and Z. X. Shen, J. Appl. Phys. 108, 071301 (2010).

    Article  ADS  Google Scholar 

  6. W. A. de Heer, C. Berger, X. Wu, M. Sprinkle, Y. Hu, M. Ruan, J. A. Stroscio, P. N. First, R. Haddon, B. Piot, C. Faugeras, M. Potemski, and J.-S. Moon, J. Phys. D: Appl. Phys. 43, 374007 (2010).

    Article  Google Scholar 

  7. D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, T. Whiteway, and V. Yu, arXiv:1110.6557.

  8. Z. Z. Alisultanov, Tech. Phys. Lett. 39(7), 597 (2013).

    Article  ADS  Google Scholar 

  9. S. Yu. Davydov, Semiconductors 47(1), 95 (2013).

    Article  ADS  Google Scholar 

  10. S. Yu. Davydov, Tech. Phys. 84(4) (2014) (in press).

    Google Scholar 

  11. S. Yu. Davydov, Semiconductors 48(1), 46 (2014).

    Article  ADS  Google Scholar 

  12. D. M. Newns, Phys. Rev. 178, 1123 (1969).

    Article  ADS  Google Scholar 

  13. S. Yu. Davydov, Semiconductors 31(10), 1062 (1997).

    Article  ADS  Google Scholar 

  14. M. N. Nair, M. Cranney, F. Vonau, D. Aubel, P. Le Fevre, A. Tejeda, F. Bertran, A. Teleb-Ibrahimi, and L. Simon, arXiv:1201.3811.

  15. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B: Condens. Matter 73, 125411 (2006).

    Article  ADS  Google Scholar 

  16. Z. Z. Alisultanov, Tech. Phys. Lett. 39(9), 758 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Additional information

Original Russian Text © S.Yu. Davydov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 4, pp. 816–820.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y. On the fermi velocity and static conductivity of epitaxial graphene. Phys. Solid State 56, 849–853 (2014). https://doi.org/10.1134/S1063783414040064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414040064

Keywords

Navigation