Skip to main content
Log in

Diversity of Properties of Device Structures Based on Group-III Nitrides, Related to Modification of the Fractal-Percolation System

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A fractal-percolation system that includes extended defects and random fluctuations in the alloy composition is formed during the growth of device structures based on Group-III nitrides. It is established that the specific features of this system are determined not only by the growth conditions. It is shown that the diversity of the electrical and optical properties of InGaN/GaN LEDs (light-emitting diodes) emitting at wavelengths of 450–460 and 519–530 nm, as well as that of the electrical properties of AlGaN/GaN HEMT (high-electron-mobility transistor) structures, is due to modification of the properties of the fractal-percolation system both during the growth process and under the action of the injection current and irradiation. The influence exerted by these specific features on the service life of light-emitting devices and on the reliability of AlGaN/GaN HEMT structures is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. A. Hurni, A. David, M. J. Cich, R. I. Aldaz, B. Ellis, K. Huang, and M. R. Krames, Appl. Phys. Lett. 106, 031101 (2015).

    Article  ADS  Google Scholar 

  2. F. Nippert, S. Yu. Karpov, G. Callsen, B. Galler, T. Kure, C. Nenstiel, M. R. Wagner, M. Strassburg, H.-Ju. Lugauer, and A. Hoffmann, Appl. Phys. Lett. 109, 1611039 (2016).

    Article  Google Scholar 

  3. M. Auf der Maur, A. Pecchia, G. Penazzi, W. Rodrigues, and A. di Carlo, Phys. Rev. Lett. 116, 027401 (2016).

    Article  ADS  Google Scholar 

  4. P. Marko, M. Menegini, S. Bychikhin, G. Meneghesso, and D. Pogany, Microelectron. Reliab. 52, 2194 (2012).

    Article  Google Scholar 

  5. R. Lossy, H. Blanck, and J. Wurfl, Microelectron. Reliab. 52, 2144 (2012).

    Article  Google Scholar 

  6. G. Pozina, R. Ciechonski, Zh. Bi, L. Samuelson, and B. Monemar, Appl. Phys. Lett. 107, 251106 (2015).

    Article  ADS  Google Scholar 

  7. V. N. Petrov, V. G. Sidorov, N. A. Talnishnikh, A. E. Chernyakov, E. I. Shabunina, N. M. Shmidt, A. S. Usikov, H. Helava, and Yu. N. Makarov, Semiconductors 50, 1173 (2016).

    Article  ADS  Google Scholar 

  8. M. Binder, B. Galler, M. Furitsch, J. Off, J. Wagner, R. Zeisel, and S. Katz, Appl. Phys. Lett. 103, 221110 (2013).

    Article  ADS  Google Scholar 

  9. M. Auf der Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. di Carlo, Appl. Phys. Lett. 105, 133504 (2014).

    Article  ADS  Google Scholar 

  10. N. I. Bochkareva, A. M. Ivanov, A. V. Klochkov, V. S. Kogotkov, Yu. T. Rebane, M. V. Virko, and Yu. G. Shreter, Semiconductors 49, 827 (2015).

    Article  ADS  Google Scholar 

  11. C. de Santi, M. Meneghini, M. la Grassa, B. Galler, R. Zeisel, M. Goano, S. Dominici, M. Mandurrino, F. Bertazzi, D. Robidas, G. Meneghesso, and E. Zanoni, J. Appl. Phys. 119, 094501 (2016).

    Article  ADS  Google Scholar 

  12. S. Steingrube, O. Breitenstein, K. Ramspeck, S. Glunz, A. Schenk, and P. P. Altermatt, J. Appl. Phys. 110, 014515 (2011).

    Article  ADS  Google Scholar 

  13. N. Shmidt, A. Usikov, E. Shabunina, A. Chernyakov, A. Sakharov, S. Kurin, A. Antipov, I. Barash, A. Roenkov, H. Helava, and Y. Makarov, Phys. Status Solidi C 12, 349 (2015).

    Article  ADS  Google Scholar 

  14. N. M. Shmidt, A. S. Usikov, E. I. Shabunina, A. E. Chernyakov, A. V. Sakharov, S. Yu. Kurin, A. A. Antipov, I. S. Barash, A. D. Roenkov, Yu. N. Makarov, and H. Helava, Tech. Phys. Lett. 40, 574 (2014).

    Article  ADS  Google Scholar 

  15. V. V. Emtsev, E. E. Zavarin, G. A. Oganesyan, V. N. Petrov, A. V. Sakharov, N. M. Shmidt, V.N.V’yuginov, A. A. Zybin, Ya. M. Parnes, S. I. Vidyakin, A. G. Gudkov, and A. E. Chernyakov, Tech. Phys. Lett. 42, 701 (2016).

    Article  ADS  Google Scholar 

  16. V. A. Shalygin, L. E. Vorobjev, D. A. Firsov, A. N. Sofronov, G. A. Melentyev, W. V. Lundin, A. V. Sakharov, and A. F. Tsatsulnikov, J. Appl. Phys. 109, 073108 (2011).

    Article  ADS  Google Scholar 

  17. A. E. Chernyakov, M. E. Levinshtein, N. A. Talnishnikh, E. I. Shabunina, and N. M. Shmidt, J. Cryst. Growth 401, 302 (2014).

    Article  ADS  Google Scholar 

  18. L. Dobrzanski, J. Appl. Phys. 96, 4135 (2004).

    Article  ADS  Google Scholar 

  19. G. P. Zhigal’skii, Fluctuations and Noise in Solid State Electronic Devices (Fizmatlit, Moscow, 2012), p. 512 [in Russian].

    Google Scholar 

  20. A. L. Zakgeim, M. E. Levinshtein, V. P. Petrov, A. E. Chernyakov, E. I. Shabunina, and N. M. Shmidt, Semiconductors 46, 208 (2012).

    Article  ADS  Google Scholar 

  21. B. Lambert, N. Labat, D. Carisetti, L. Brunel, and M. Mermoux, Microelectron. Reliab. 52, 2184 (2012).

    Article  Google Scholar 

  22. N. V. D’yakonova, M. E. Levinshtein, S. Contreras, W. Knap, B. Beaumont, and P. Gibart, Semiconductors 32, 257 (1998).

    Article  ADS  Google Scholar 

  23. S. L. Rumyantsev, Y. Deng, E. Borovitskaya, A. Dmitriev, W. Knap, N. Pala, M. S. Shur, M. E. Levinshtein, M. Asif Khan, G. Simin, J. Yang, and X. Hu, J. Appl. Phys. 92, 4726 (2002).

    Article  ADS  Google Scholar 

  24. V. V. Emtsev, E. E. Zavarin, M. A. Kozlovskii, M. F. Kudoyarov, V. V. Lundin, G. A. Oganesyan, V. N. Petrov, D. S. Poloskin, A. V. Sakharov, S. I. Troshkov, N. M. Shmidt, V. N. V’yuginov, A. A. Zybin, Ya.M. Parnes, S. I. Vidyakin, et al., Tech. Phys. Lett. 42, 1079 (2016).

    Article  ADS  Google Scholar 

  25. D. V. Gromov and G. V. Chukov, Radiation Effect on Heterostructure Microwave Devices and Integral Schemes (Palamarium Academic, Saarbrücken, 2012), p. 91 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Shmidt.

Additional information

Original Russian Text © V.V. Emtsev, E.V. Gushchina, V.N. Petrov, N.A. Tal’nishnih, A.E. Chernyakov, E.I. Shabunina, N.M. Shmidt, A.S. Usikov, A.P. Kartashova, A.A. Zybin, V.V. Kozlovski, M.F. Kudoyarov, A.V. Saharov, A.G. Oganesyan, D.S. Poloskin, V.V. Lundin, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 7, pp. 804–811.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emtsev, V.V., Gushchina, E.V., Petrov, V.N. et al. Diversity of Properties of Device Structures Based on Group-III Nitrides, Related to Modification of the Fractal-Percolation System. Semiconductors 52, 942–949 (2018). https://doi.org/10.1134/S1063782618070072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618070072

Navigation