Skip to main content
Log in

A Time-of-Flight Atomic Analyzer with 2D Electrostatic Focusing

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A scheme of a multichannel time-of-flight atomic analyzer with an electrostatic deflection system that provides two-dimensional focusing of the ion beam in the transverse direction is described. A thin carbon film with a thickness of 100 Å is used to ionize the incoming flow of atoms. The results of numerical simulation of the main parameters of the analyzer, such as the energy values in the channels, their energy resolution, and permeability, are given. An example of the possible use of such an atomic analyzer for measuring the energy distribution function of thermal plasma ions and fast ions of heating beams in the deuterium–tritium operating regime of the TRT facility is considered. The efficiency of radiation background suppression in the analyzer detection system by the coincidence circuit has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. P. Petrov, V. I. Afanasyev, F. V. Chernyshev, P. R. Goncharov, M. I. Mironov, and S. Ya. Petrov, Eur. Phys. J. H 46, 5 (2021). https://doi.org/10.1140/epjh/s13129-021-00009-6

    Article  Google Scholar 

  2. S. S. Medley, A. J. H. Donné, R. Kaita, A. I. Kislyakov, M. P. Petrov, and A. L. Roquemore, Rev. Sci. Instrum. 79, 011101 (2008). https://doi.org/10.1063/1.2823259

  3. V. I. Afanasyev, A. Gondhalekar, P. Yu. Babenko, P. Beaumont, P. De Antonis, A. V. Detch, A. I. Kislyakov, S. S. Kozlovskij, M. I. Mironov, M. P. Petrov, S. Ya. Petrov, F. V. Tschernyshev, C. H. Wilson, and Contributors to the EFDA-JET Workprogramme, Rev. Sci. Instrum. 74, 2338 (2003). https://doi.org/10.1063/1.1542664

    Article  ADS  Google Scholar 

  4. V. I. Afanasyev, F. V. Chernyshev, A. I. Kislyakov, S. S. Kozlovski, B. V. Lyublin, M. I. Mironov, A. D. Melnik, V. G. Nesenevich, M. P. Petrov, and S. Ya. Petrov, Nucl. Instrum. Methods Phys. Res., Sect. A 621, 456 (2010). https://doi.org/10.1016/j.nima.2010.06.201

    Article  Google Scholar 

  5. G. Bracco, G. Betello, S. Mantovani, A. Moleti, B. Tilia, and V. Zanza, Rev. Sci. Instrum. 63, 5685 (1992). https://doi.org/10.1063/1.1143350

    Article  ADS  Google Scholar 

  6. A. C. Maas, P. Andrew, P. Coad, A. Edwards, J. Ehrenberg, A. Gibson, K. Günther, P. Harbour, M. G. von Hellermann, D. Hillis, A. Howman, O. N. Jarvis, J. F. Jünger, R. W. T. König, J. Lingertat, et al., Fusion Eng. Des. 47, 247 (1999). https://doi.org/10.1016/S0920-3796(99)00085-X

    Article  Google Scholar 

  7. T. Ozaki, G. Bracco, V. Zanza, A. Moleti, B. Tilia, A. Sibio, S. Sudo, H. Nakanishi, M. Kojima, M. Shoji, and G1/G2 Experimental Group, Rev. Sci. Instrum, 71, 2698 (2000).

    Article  ADS  Google Scholar 

  8. A. V. Krasilnikov, S. V. Konovalov, E. N. Bondarchuk, I. V. Mazul, I. Yu. Rodin, A. B. Mineev, E. G. Kuz’min, A. A. Kavin, D. A. Karpov, V. M. Leonov, R. R. Khayrutdinov, A. S. Kukushkin, D. V. Portnov, A. A. Ivanov, Yu. I. Belchenko, et al., Plasma Phys. Rep. 47, 1092 (2021). https://doi.org/10.1134/S1063780X21110192

    Article  ADS  Google Scholar 

  9. V. M. Leonov, S. V. Konovalov, V. E. Zhogolev, A. A. Kavin, A. V. Krasilnikov, A. Yu. Kuyanov, V. E. Lukash, A. B. Mineev, and R. R. Khayrutdinov, Plasma Phys. Rep. 47, 1107 (2021). https://doi.org/10.1134/S1063780X21120047

    Article  ADS  Google Scholar 

  10. Yu. I. Belchenko, A. V. Burdakov, V. I. Davydenko, A. I. Gorbovskii, I. S. Emelev, A. A. Ivanov, A. L. Sanin, and O. Z. Sotnikov, Plasma Phys. Rep. 47, 1151 (2021). https://doi.org/10.1134/S1063780X21110131

    Article  ADS  Google Scholar 

  11. M. Gonin, R. Kallenbach, and P. Bochsler, Rev. Sci. Instrum. 65, 648 (1994). https://doi.org/10.1063/1.1145132

    Article  ADS  Google Scholar 

  12. J. F. Ziegler and J. P. Biersack, SRIM Sowtware. http://www.srim.org/. Cited February 10, 2022.

  13. V. D. Dmitriev, S. M. Luk’yanov, Yu. E. Penionzhkevich, and D. K. Sattarov, Prib. Tekh. Eksp., No. 2, 7 (1982).

  14. E. S. Ventsel’, Probability Theory (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  15. V. I. Afanas’ev, P. R. Goncharov, A. D. Mel’nik, M. I. Mironov, A. S. Navolotskii, V. G. Nesenevich, M. P. Petrov, and S. Ya. Petrov, Plasma Phys. Rep. 48, 819 (2022).

Download references

Funding

The study was supported by the Ministry of Education and Science of the Russian Federation within State assignment no. 0040-2019-0023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Afanasyev or S. S. Kozlovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasyev, V.I., Kozlovskii, S.S., Melnik, A.D. et al. A Time-of-Flight Atomic Analyzer with 2D Electrostatic Focusing. Plasma Phys. Rep. 48, 829–837 (2022). https://doi.org/10.1134/S1063780X22700295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X22700295

Keywords:

Navigation