Skip to main content
Log in

Probe Device for Comprehensive Study of Plasma Interaction with Divertor for TRT Tokamak

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The choice of plasma contact materials and configurations for power fusion reactors is still not obvious. The tokamak with reactor technologies (TRT) under construction should help resolve this issue. Therefore, the most complete study of the effect of plasma on the tokamak divertor for various types of discharges and an analysis of their consequences are of great importance. Divertor probes are devices that measure thermal and corpuscular flows toward the surface of a divertor and/or record the results of their impact on the divertor. They have found wide application in fusion facilities. The features, advantages, and disadvantages of the divertor probes presented in literature, as well as cases of using samples of materials or devices to solve individual problems to which divertor probes are applicable are discussed in this work. A preliminary design and thermal calculations of the divertor probe for the TRT tokamak are presented, which, according to the authors, is capable of performing a set of measurements that make it possible to draw a conclusion about the mechanisms and regularities of processes on the divertor surface depending on the parameters and conditions of plasma irradiation, as well as to speed up the determination of optimal materials and modes of plasma irradiation of divertor tiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. V. Krasilnikov, S. V. Konovalov, E. N. Bondarchuk, I. V. Mazul, I. Yu. Rodin, A. B. Mineev, E. G. Kuz’min, A. A. Kavin, D. A. Karpov, V. M. Leonov, R. R. Khairutdinov, A. S. Kukushkin, D. V. Portnov, A. A. Ivanov, Yu. I. Bel’chenko, et al., Plasma Phys. Rep. 47, 1092 (2021). https://doi.org/10.1134/S1063780X21110192

    Article  ADS  Google Scholar 

  2. A. S. Kukushkin and A. A. Pshenov, Plasma Phys. Rep. 47, 1238 (2021). https://doi.org/10.1134/S1063780X21110209

    Article  ADS  Google Scholar 

  3. I. V. Mazul, R. N. Giniyatulin, A. A. Kavin, N. V. Litunovskii, A. N. Makhan’kov, P. Yu. Piskarev, and V. N. Tanchuk, Plasma Phys. Rep. 47, 1220 (2021). https://doi.org/10.1134/S1063780X21110210

    Article  ADS  Google Scholar 

  4. XIX All-Russian Conference on Diagnostics of High-Temperature Plasmas, Sochi, 2021, Book of Abstracts. http://dvp.iterrf.ru/tezisy.

  5. S. N. Tugarinov, A. V. Krasilnikov, N. V. Kuz’min, V. V. Serov, and S. V. Serov, in XIX All-Russian Conference on Diagnostics of High-Temperature Plasmas, Sochi, 2021, Book of Abstracts, p. 71.

  6. V. I. Afanas’ev, P. R. Goncharov, S. S. Kozlovskii, A. D. Mel’nik, M. I. Mironov, A. S. Navolotskii, V. G. Nesenevich, M. P. Petrov, S. Ya. Petrov, and F. V. Chernyshev, in XIX All-Russian Conference on Diagnostics of High-Temperature Plasmas, Sochi, 2021, Book of Abstracts, p. 73.

  7. K. K. Artem’ev, A. V. Krasil’nikov, T. M. Kormilitsyn, M. I. Mironov, V. I. Afanas’ev, M. P. Petrov, S. Ya. Petrov, I. V. Kedrov, and D. A. Antropov, in XIX All-Russian Conference on Diagnostics of High-Temperature Plasmas, Sochi, 2021, Book of Abstracts, p. 92.

  8. A. Yu. Afonin, K. Yu. Afonin, V. A. Vershkov, V. G. Petrov, G. F. Subbotin, and D. A. Shelukhin, in XIX All-Russian Conference on Diagnostics of High-Temperature Plasmas, Sochi, 2021, Book of Abstracts, p. 81.

  9. A. E. Shevelev, E. M. Khil’kevich, M. V. Il’yasova, D. N. Doinikov, I. A. Polunovskii, and V. O. Naidenov, in XIX All-Russian Conference on Diagnostics of High-Temperature Plasmas, Sochi, 2021, Book of Abstracts, p. 79.

  10. A. A. Ivanov, V. I. Davydenko, and N. V. Stupishin, in XIX All-Russian Conference on Diagnostics of High-Temperature Plasmas, Sochi, 2021, Book of Abstracts, p. 84.

  11. K. Yu. Vukulov, E. N. Andreenko, and A. V. Gorbunov, in XIX All-Russian Conference on Diagnostics of High-Temperature Plasmas, Sochi, 2021, Book of Abstracts, p. 68.

  12. E. E. Mukhin, S. Yu. Tolstyakov, G. S. Kurskiev, A. V. Gorbunov, K. Yu. Vukulov, V. S. Lisitsa, M. G. Levashova, N. S. Zhil’tsov, V. A. Solovei, N. A. Babinov, A. F. Kornev, A. N. Koval’, and P. V. Chernakov, in XIX All-Russian Conference on Diagnostics of High-Temperature Plasmas, Sochi, 2021, Book of Abstracts, p. 75.

  13. A. G. Razdobarin, A. M. Dmitriev, D. I. Elets, E. E. Mukhin, L. A. Snigirev, Yu. M. Gasparyan, D. G. Bulgadaryan, E. D. Vovchenko, V. S. Efimov, N. E. Efimov, S. A. Krat, D. N. Sinel’nikov, and I. V. Alekseenko, in XIX All-Russian Conference on Diagnostics of High-Temperature Plasmas, Sochi, 2021, Book of Abstracts, p. 86.

  14. Ch. Linsmeier, B. Unterberg, J. W. Coenen, R. P. Doerner, H. Greuner, A. Kreter, J. Linke, and H. Maier, Nucl. Fusion 57, 092012 (2017). https://doi.org/10.1088/1741-4326/aa4feb

  15. J. P. Coad, M. Rubel, J. Likonen, N. Bekris, S. Brezinsek, G. F. Matthews, M. Mayer, A. M. Widdowson, and JET Contributors, Fusion Eng. Des. 138, 78 (2019). https://doi.org/10.1016/j.fusengdes.2018.10.002

    Article  Google Scholar 

  16. M. Rubel, J. P. Coad, A. Widdowson, G. F. Matthews, H. G. Esser, T. Hirai, J. Likonen, J. Linke, C. P. Lungu, M. Mayer, L. Pedrick, C. Ruset, and JET-EFDA Contributors, J. Nucl. Mater. 438, S1204 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.266

    Article  Google Scholar 

  17. E. Tsitrone, B. Pegourie, J. P. Gunn, E. Bernard, V. Bruno, Y. Corre, L. Delpech, M. Diez, D. Douai, A. Ekedahl, N. Fedorczak, A. Gallo, T. Loarer, S. Vartanian, J. Gaspar, et al., Nucl. Fusion 62, 076028 (2022). https://doi.org/10.1088/1741-4326/ac2ef3

  18. J. P. Gunn, J. Bucalossi, Y. Corre, M. Diez, E. Delmas, N. Fedorczak, A. Grosjean, M. Firdaouss, J. Gaspar, T. Loarer, M. Missirlian, P. Moreau, E. Nardon, C. Reux, M. Richou, et al., Nucl. Mater. Energy 27, 100920 (2021). https://doi.org/10.1016/j.nme.2021.100920

  19. M. Diez, Y. Corre, E. Delmas, N. Fedorczak, M. Firdaouss, A. Grosjean, J. P. Gunn, T. Loarer, M. Missirlian, M. Richou, E. Tsitrone, and the WEST Team, Nucl. Fusion 61, 106011 (2021). https://doi.org/10.1088/1741-4326/ac1dc6

  20. A. Hakola, S. Brezinsek, D. Douai, M. Balden, V. Bobkov, D. Carralero, H. Greuner, S. Elgeti, A. Kallenbach, K. Krieger, G. Meisl, M. Oberkofler, V. Rohde, P. Schneider, T. Schwarz-Selinger, et al., Nucl. Fusion 57, 066015 (2017). https://doi.org/10.1088/1741-4326/aa69c4

  21. D. J. Campbell, T. Akiyama, R. Barnsley, M. Bassan, L. R. Baylor, L. Bertalot, F. Escourbiac, L. M. Giancarli, P. Gitton, J. Guirao, M. Kocan, V. Krasilnikov, U. Kruezi, M. Lehnen, S. Maruyama, et al., J. Fusion Energy 38, 11 (2019). https://doi.org/10.1007/s10894-018-0187-9

    Article  Google Scholar 

  22. R. Reichle, P. Andrew, P. Bates, O. Bede, N. Casal, C. H. Choi, R. Barnsley, C. Damiani, L. Bertalot, G. Dubus, J. Ferreol, G. Jagannathan, M. Kocan, F. Leipold, S. W. Lisgo, et al., J. Nucl. Mater. 463, 180 (2015). https://doi.org/10.1016/j.jnucmat.2015.01.039

    Article  ADS  Google Scholar 

  23. J. Matějíček, V. Weinzettl, A. Macková, P. Malinský, V. Havránek, D. Naydenkova, V. Klevarová, P. Petersson, P. Gasior, A. Hakola, M. Rubel, E. Fortuna, J. Kolehmainen, and S. Tervakangas, J. Nucl. Mater. 493, 102 (2017). https://doi.org/10.1016/j.jnucmat.2017.06.009

    Article  ADS  Google Scholar 

  24. D. H. Zhu, J. L. Chen, Z. J. Zhou, R. Yan, and R. Ding, J. Nucl. Mater. 435, 107 (2012). https://doi.org/10.1016/j.jnucmat.2012.12.044

    Article  ADS  Google Scholar 

  25. A. Goriaev, T. Wauters, S. Möller, R. Brakel, S. Brezinsek, J. Buermans, K. Crombé, A. Dinklage, R. Habrichs, D. Höschen, M. Krause, Yu. Kovtun, D. López-Rodríguez, F. Louche, S. Moon, et al., Rev. Sci. Instrum. 92, 023506 (2021). https://doi.org/10.1063/5.0033229

  26. H.-D. Liu, H.-S. Zhou, M.-Z. Zhao, J. Wu, Y.-P. Xu, J. Wang, Y.-C. Zhang, N.-B. Sun, F. Ding, Q. Xu, and G.-N. Luo, IEEE Trans. Plasma Sci. 46, 2198 (2018). https://doi.org/10.1109/TPS.2018.2825234

    Article  ADS  Google Scholar 

  27. S. H. Son, S.-H. Hong, J. Kim, J. Y. Kim, H. S. Kim, F. Ding, G.-N. Luo, J. Németh, S. Zoletnik, A. Fenyvesi, and R. Pitts, Fusion Eng. Des. 109111, 286 (2016). https://doi.org/10.1016/j.fusengdes.2016.03.011

  28. S. Lukes, J. Horacek, V. Veselovsky, P. Vondracek, D. Sestak, J. Adamek, V. Weinzettl, and I. Duran, J. Instrum. 17, C02007 (2022). https://doi.org/10.1088/1748-0221/17/02/C02007

  29. C. P. C. Wong, R. Junge, R. D. Phelps, P. Politzer, F. Puhn, W. P. West, R. Bastasz, D. Buchenauer, W. Hsu, J. Brooks, and T. Hua, J. Nucl. Mater. 196−198, 871 (1992). https://doi.org/10.1016/S0022-3115(06)80159-5

  30. C. N. Taylor, B. Heim, S. Gonderman, J. P. Allain, Z. Yang, R. Kaita, A. L. Roquemore, C. H. Skinner, and R. A. Ellis, Rev. Sci. Instrum. 83, 10D703 (2012). https://doi.org/10.1063/1.4729262

  31. B. Schweer, S. Brezinsek, H. G. Esser, A. Huber, Ph. Mertens, S. Musso, V. Philipps, A. Pospieszczyk, U. Samm, G. Sergienko, and P. Wienhold, Fusion Sci. Technol. 47, 138 (2005). https://doi.org/10.13182/FST05-A695

    Article  ADS  Google Scholar 

  32. E. A. Azizov, V. N. Dokouka, N. Ya. Dvorkin, R. R. Khayrutdinov, V. A. Korotkov, I. A. Kovan, V. A. Krylov, I. N. Leykin, A. B. Mineev, G. V. Shapovalov, V. P. Shestakov, V. S. Shkolnik, I. L. Tazhibaeva, L. N. Tikhomirov, and E. P. Velikhov, Plasma Devices Oper. 11, 39 (2003). https://doi.org/10.1080/1051999031000088457

    Article  ADS  Google Scholar 

  33. V. A. Korotkov, E. A. Azizov, Yu. S. Cherepnin, V. N. Dokouka, N. Ya. Dvorkin, R. R. Khayrutdinov, V. A. Krylov, E. G. Kuzmin, I. N. Leykin, A. B. Mineev, V. S. Shkolnik, V. P. Shestakov, G. V. Shapovalov, I. L. Tazhibaeva, L. N. Tikhomirov, et al., Fusion Eng. Des. 56−57, 831 (2001). https://doi.org/10.1016/S0920-3796(01)00361-1

  34. I. Zammuto, A. Herrmann, N. Jaksic, M. Li, M. Balden, V. Rohde, S. Vorbrugg, H. Greuner, R. Neu, A. Kallenbach, and the ASDEX Upgrade Team, Fusion Eng. Des. 146, Part B, 2434 (2019). https://doi.org/10.1016/j.fusengdes.2019.04.011

  35. M. Hubeny, D. Höschen, O. Neubauer, R. Hoek, G. Czymek, D. Naujoks, D. Hathiramani, D. Bardawil, B. Unterberg, R. König, S. Brezinsek, Ch. Linsmeier, and W7-X Team, Fusion Eng. Des. 167, 112297 (2021). https://doi.org/10.1016/j.fusengdes.2021.112297

  36. M. Hubeny, D. Höschen, M. Rack, O. Neubauer, S. Bozhenkov, G. Czymek, B. Unterberg, R. König, D. Hathiramani, S. Brezinsek, and Ch. Linsmeier, Nucl. Mater. Energy 18, 77 (2019). https://doi.org/10.1016/j.nme.2018.11.028

    Article  Google Scholar 

  37. H. De Oliveira, C. Theiler, H. Elaian, and TCV Team, Rev. Sci. Instrum. 92, 043547 (2021). https://doi.org/10.1063/5.0043523

  38. G. F. Matthews, Plasma Phys. Control. Fusion. 36, 1595 (1994). https://doi.org/10.1088/0741-3335/36/10/002

    Article  ADS  Google Scholar 

  39. L. Y. Meng, J. C. Xu, J. B. Liu, L. Wang, X. Y. Qian, L. Chen, X. Liu, G. S. Xu, R. R. Liang, J. Huang, H. Lan, S. T. Mao, Y. M. Duan, A. Li, L. Yu, et al., Nucl. Mater. Energy 27, 100996 (2021). https://doi.org/10.1016/j.nme.2021.100996

  40. L. Rudischhauser, M. Endler, U. Höfel, K. C. Hammond, J. P. Kallmeyer, B. D. Blackwell, and Wendelstein 7-X Team, Rev. Sci. Instrum. 91, 063505 (2020). https://doi.org/10.1063/1.5143013

  41. H. Q. Wang, J. G. Watkins, H. Y. Guo, M. Groth, A. E. Jarvinen, A. W. Leonard, J. Ren, D. M. Thomas, and J. Boedo, Phys. Plasmas 28, 052509 (2021). https://doi.org/10.1063/5.0048609

  42. J. Gaspar, Y. Corre, N. Fedorczak, J. P. Gunn, C. Bourdelle, S. Brezinsek, J. Bucalossi, N. Chanet, R. Dejarnac, M. Firdaouss, J.-L. Gardarein, G. Laffont, T. Loarer, C. Pocheau, E. Tsitrone, et al., Nucl. Fusion 61, 096027 (2021). https://doi.org/10.1088/1741-4326/ac1803

  43. J. G. Bak, Y. S. Oh, H. S. Kim, S. H. Hahn, S. W. Yoon, Y. M. Jeon, W. W. Xiao, W. H. Ko, W. C. Kim, J. G. Kwak, H. J. Woo, K. S. Chung, and the KSTAR Project Team, Contrib. Plasma Phys. 53, 69 (2013). https://doi.org/10.1002/ctpp.201310012

    Article  ADS  Google Scholar 

  44. W. Zhao, Y. Wang, Y. Jin, L. Zhao, H. Zhou, L. Nie, G. Zhong, C. Liu, C. Watts, and J. P. Gunn, Fusion Sci. Technol. 76, 79 (2020). https://doi.org/10.1080/15361055.2019.1674123

    Article  ADS  Google Scholar 

  45. A. Q. Kuang, D. Brunner, B. LaBombard, R. Leccacorvi, and R. Vieira, Rev. Sci. Instrum. 89, 043512 (2018). https://doi.org/10.1063/1.5023905

  46. C. Guillemaut, M. Lennholm, J. Harrison, I. Carvalho, D. Valcarcel, R. Felton, S. Griph, C. Hogben, R. Lucock, G. F. Matthews, C. Perez Von Thun, R. A. Pitts, S. Wiesen, and JET Contributors, Plasma Phys. Control. Fusion 59, 045001 (2017). https://doi.org/10.1088/1361-6587/aa5951

  47. J. B. Liu, L. Wang, H. Y. Guo, H. Q. Wang, G. S. Xu, F. Ding, J. C. Xu, X. J. Liu, Q. P. Yuan, K. Wu, S. C. Liu, C. F. Sang, L. Y. Meng, W. Feng, A. Hyatt, et al., Nucl. Fusion 59, 126046 (2019). https://doi.org/10.1088/1741-4326/ab4639

  48. J. Bucalossi. J. Achard, O. Agullo, T. Alarcon, L. Allegretti, H. Ancher, G. Antar, S. Antusch, V. Anzallo, C. Arnas, D. Arranger, J. F. Artaud, M. H. Aumeunier, S. G. Baek, X. Bai, et al., Nucl. Fusion 62, 042007 (2022). https://doi.org/10.1088/1741-4326/ac2525

  49. A. Tariq and M. Asif, Heat Mass Transfer 52, 291 (2016). https://doi.org/10.1007/s00231-015-1551-1

    Article  ADS  Google Scholar 

  50. Thermal Grizzly, Kryonaut Thermal Grease Paste. www.thermal-grizzly.com/produkte/2-kryonaut. Cited August 25, 2022.

  51. Ted Pella, Inc., PELCO High Performance Silver Paste. www.tedpella.com/technote_html/16047-TN-V1-06232009.pdf. Cited August 25, 2022.

  52. Salah El-Din El-Morshedy, Nucl. Mater. Energy 28, 101035 (2021). https://doi.org/10.1016/j.nme.2021.101035

  53. E. A. Azizov, A. A. Airapetov, L. B. Begrambekov, O. I. Buzhinskii, S. V. Vergazov, A. V. Grunin, A. A. Gordeev, A. M. Zakharov, A. M. Kalachev, I. V. Mazul, R. A. Rakhmanov, Ya. A. Sadovskii, and P. A. Shigin, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint. 37 (4), 30 (2014). https://doi.org/10.21517/0202-3822-2014-37-4-30-38

    Article  Google Scholar 

  54. A. A. Ayrapetov, L. B. Begrambekov, M. Yu. Dyachenko, A. E. Evsin, A. V. Grunin, A. M. Kalachev, Ya. A. Sadovskiy, and P. A. Shigin, J. Phys.: Conf. Ser. 700, 012041 (2016). https://doi.org/10.1088/1742-6596/700/1/012041

  55. Ya. Sadovskiy, L. Begrambekov, P. Shigin, A. Ayrapetov, O. Bidlevich, A. Grunin, and N. Utkov, J. Phys.: Conf. Ser. 789, 012044 (2017). https://doi.org/10.1088/1742-6596/789/1/012044

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Airapetov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Airapetov, A.A., Begrambekov, L.B. & Sadovskiy, Y.A. Probe Device for Comprehensive Study of Plasma Interaction with Divertor for TRT Tokamak. Plasma Phys. Rep. 48, 1404–1413 (2022). https://doi.org/10.1134/S1063780X2260150X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2260150X

Keywords:

Navigation