Skip to main content
Log in

Dependence of the Generation Rate of High-Energy Electrons in Helium on the Electron Angular Scattering Model

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

It is known that in dense gases in sufficiently strong electric fields, electrons can be continuously accelerated, when they receive more energy from the field than is lost in collisions with atoms and molecules of the medium (runaway electrons). In this work, we study the effect of electron angular scattering in elementary ionization and excitation acts of atoms on the acceleration of electrons in strong fields. To this end, a computer code is developed on the basis of the Monte Carlo technique, and the kinetics of electrons in helium is numerically simulated. In the setting corresponding to the configurations of laboratory experiments with electron “swarms,” the code is tested by comparing the calculated kinetic characteristics of the electron swarm (ionization coefficient, drift velocity) with the measurement data in different types of experiments. Numerical simulation is performed for a gas of motionless helium atoms with a concentration N equal to the Loschmidt number \({{N}_{{\text{L}}}} = 2.69 \times \) 1019 cm–3, in the fields with the strength E from 50 to 300 kV cm–1. The generation rate νhe of electrons with energies in the range from 0.25 to 10 keV is calculated, which is recommended for the use in a source of high-energy electrons in problems of the numerical simulation of gas discharges developing in strong electric fields with the participation of runaway electrons. It is shown that different models of electron anisotropic scattering in inelastic interactions with atoms can lead to multiple differences in the rate νhe values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. L. P. Babich, T. V. Loiko, and V. A. Tsukerman, Sov. Phys.–Usp. 33, 521(1990).

    ADS  Google Scholar 

  2. L. P. Babich, High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena (ISTC Science and Technology Series, Vol. 2) (Futurepast, Arlington, VA, 2003).

    Google Scholar 

  3. L. P. Babich, Phys.–Usp. 63, 1188 (2020).

    Google Scholar 

  4. J. R. Dwyer, H. K. Rassoul, Z. Saleh, M. A. Uman, J. Jerauld, and J. A. Plumer, Geophys. Res. Lett. 32, L20809 (2005).

  5. J. R. Dwyer, Z. Saleh, H. K. Rassoul, D. Concha, M. Rahman, V. Cooray, J. Jerauld, M. A. Uman, and V. A. Rakov, J. Geophys. Res. 113, D23207 (2008).

  6. C. V. Nguyen, A. P. J. van Deursen, and U. Ebert, J. Phys. D: Appl. Phys. 41, 234012 (2008).

  7. M. Rahman, V. Cooray, N. A. Ahmad, J. Nyberg, V. A. Rakov, and S. Sharma, Geophys. Res. Lett. 35, L06805 (2008).

  8. C. V. Nguyen, A. P. J. van Deursen, E. J. M. van Heesch, G. J. J. Winands, and A. J. M. Pemen, J. Phys. D: Appl. Phys. 43, 025202 (2010).

  9. T. Shao, V. F. Tarasenko, C. Zhang, D. V. Rybka, I. D. Kostyrya, A. V. Kozyrev, P. Yan, and V. Yu. Kozhevnikov, New J. Phys. 13, 113035 (2011).

  10. D. V. Rybka, I. V. Andronikov, G. S. Evtushenko, A. V. Kozyrev, V. Yu. Kozhevnikov, I. D. Kostyrya, V. F. Tarasenko, M. V. Trigub, and Yu. V. Shut’ko, Opt. Atmos. Okeana 26 (1), 85 (2013).

    Google Scholar 

  11. P. O. Kochkin, C. V. Nguyen, A. P. J. van Deursen, and U. Ebert, J. Phys. D: Appl. Phys. 45, 425202 (2012).

  12. N. Østgaard, B. E. Carlson, R. S. Nisi, T. Gjesteland, Ø. Grondahl, A. Skeltved, N. G. Lehtinen, A. Mezentsev, M. Marisaldi, and P. Kochkin, J. Geophys. Res.: Atmos. 121, 2939 (2016).

    ADS  Google Scholar 

  13. J. R. Dwyer, H. K. Rassoul, M. Al-Dayeh, L. Caraway, B. Wright, A. Chrest, M. A. Uman, V. A. Rakov, K. J. Rambo, D. M. Jordan, J. Jerauld, and C. Smyth, Geophys. Res. Lett. 31, L05119 (2004).

  14. J. R. Dwyer, H. K. Rassoul, M. Al-Dayeh, L. Caraway, A. Chrest, B. Wright, E. Kozak, J. Jerauld, M. A. Uman, V. A. Rakov, D. M. Jordan, and K. J. Rambo, Geophys. Res. Lett. 32, L01803 (2005).

  15. G. J. Fishman, P. N. Bhat, R. Mallozzi, J. M. Horack, T. Koshut, C. Kouveliotou, G. N. Pendleton, C. A. Meegan, R. B. Wilson, W. S. Paciesas, S. J. Goodman, and H. J. Christian, Science 264 (5163), 1313 (1994).

    ADS  Google Scholar 

  16. L. P. Babich, Phys.–Usp. 62, 976 (2019).

    Google Scholar 

  17. S. Celestin and V. P. Pasko, J. Geophys. Res.: Space Phys. 116, A03315 (2011).

  18. L. P. Babich, E. I. Bochkov, and I. M. Kutsyk, JETP Lett. 99, 386 (2014).

    ADS  Google Scholar 

  19. L. P. Babich, E. I. Bochkov, I. M. Kutsyk, T. Neubert, and O. Chanrion, J. Geophys. Res.: Space Phys. 120, 5087 (2015). https://doi.org/10.1002/2014JA020923

    Article  ADS  Google Scholar 

  20. L. P. Babich, E. I. Bochkov, I. M. Kutsyk, T. Neubert, and O. Chanrion, J. Geophys. Res.: Space Phys. 122, 8974 (2017). https://doi.org/10.1002/2017JA023917

    Article  ADS  Google Scholar 

  21. C. Köhn, O. Chanrion, L. P. Babich, and T. Neubert, Plasma Sources Sci. Technol. 27, 015017 (2018).

  22. C. Köhn, O. Chanrion, and T. Neubert, Geophys. Res. Lett. 45, 5194 (2018).

    ADS  Google Scholar 

  23. V. Cooray, L. Arevalo, M. Rahman, J. Dwyer, and H. Rassoul, J. Atmos. Sol.–Terr. Phys. 71, 1890 (2009).

    ADS  Google Scholar 

  24. L. Babich and E. Bochkov, J. Phys. D: Appl. Phys. 50, 455202 (2017).

  25. L. P. Babich and M. L. Kudryavtseva, J. Exp. Theor. Phys. 104, 704 (2007).https://doi.org/10.1134/S1063776107050044

    Article  ADS  Google Scholar 

  26. L. P. Babich and E. I. Bochkov, J. Exp. Theor. Phys. 112, 494 (2011). https://doi.org/10.1134/S1063776111020014

    Article  ADS  Google Scholar 

  27. L. P. Babich, A. Yu. Kudryavtsev, M. L. Kudryavtseva, and I. M. Kutsyk, Geomagn. Aeron. 48, 367 (2008).https://doi.org/10.1134/S0016793208030110

    Article  ADS  Google Scholar 

  28. L. P. Babich, E. I. Bochkov, J. R. Dwyer, and I. M. Kutsyk, J. Geophys. Res.: Space Phys. 117, A09316 (2012). https://doi.org/10.1029/2012JA017799

  29. I. M. Kutsyk, L. P. Babich, E. N. Donskoi, and E. I. Bochkov, Plasma Phys. Rep. 38, 891 (2012). https://doi.org/10.1134/S1063780X12110050

    Article  ADS  Google Scholar 

  30. J. R. Dwyer, D. M. Smith, and S. A. Cummer, Space Sci. Rev. 173, 133 (2012). https://doi.org/10.1007/s11214-012-9894-0

  31. G. D. Moss, V. P. Pasko, N. Liu, and G. Veronis, J. Geophys. Res.: Space Phys. 111, A02307 (2006).

  32. O. Chanrion and T. Neubert, J. Geophys. Res.: Space Phys. 115, A00E32 (2010). https://doi.org/10.1029/2009JA014774

  33. K. I. Bakhov, L. P. Babich, and I. M. Kutsyk, IEEE Trans. Plasma Sci. 28, 1254 (2000).

    ADS  Google Scholar 

  34. O. Chanrion, Z. Bonaventura, A. Bourdon, and T. Neubert, Plasma Phys. Control. Fusion 58, 044001 (2016).

  35. M. Adibzadeh and C. E. Theodosiou, At. Data Nucl. Data Tables 91, 8 (2005).

    ADS  Google Scholar 

  36. F. Salvat, A. Jablonski, and C. J. Powell, Comput. Phys. Commun. 165, 157 (2005).

    ADS  Google Scholar 

  37. G. G. Raju, Gaseous Electronics: Tables, Atoms, and Molecules (CRC Press, Boca Raton, 2012).

    Google Scholar 

  38. Yu. Ralchenko, R. K. Janev, T. Kato, D. V. Fursa, I. Bray, and F. J. de Heer, At. Data Nucl. Data Tables 94, 603 (2008).

    ADS  Google Scholar 

  39. The LXCat project. http://www.lxcat.laplace.univtlse.fr. Cited March 8, 2021.

  40. G.D. Alkhazov, Sov. Phys.–Tech. Phys.15, 66 (1970).

    ADS  Google Scholar 

  41. Y.-K. Kim and M. E. Rudd, Phys. Rev. A 50, 3954 (1994).

    ADS  Google Scholar 

  42. D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).

    ADS  Google Scholar 

  43. B. L. Scharm, F. J. de Heer, M. J. van der Wiel, and J. Kistemaker, Physica 31, 94 (1965).

    ADS  Google Scholar 

  44. R. Rejoub, B. G. Lindsay, and R. F. Stebbings, Phys. Rev. A 65, 042713 (2002).

  45. J. W. McConkey and J. A. Preston, J. Phys. B: At. Mol. Phys. 8, 63 (1975).

    ADS  Google Scholar 

  46. W. R. Newell, D. F. C. Brewert, and A. C. H. Smith, J. Phys. B: At. Mol. Phys. 14, 3209 (1981).

    ADS  Google Scholar 

  47. M. J. Brunger, S. J. Buckman, L. J. Allen, I. E. McCarthy, and K. Ratnavelu, J. Phys. B: At. Mol. Opt. Phys. 25, 1823 (1992).

    ADS  Google Scholar 

  48. M. Hoshino, H. Kato, H. Tanaka, I. Bray, D. V. Fursa, S. J. Buckman, O. Ingólfsson, and M. J. Brunger, J. Phys. B: At. Mol. Opt. Phys. 42, 145202 (2009).

  49. D. Cubric, D. J. L. Mercer, J. M. Channing, G. C. King, and F. H. Read, J. Phys. B: At. Mol. Opt. Phys. 32, L45 (1999).

    ADS  Google Scholar 

  50. R. Ward, D. Cubric, N. Bowring, G. C. King, F. H. Read, D. V. Fursa, I. Bray, O. Zatsarinny, and K. Bartschat, J. Phys. B: At. Mol. Opt. Phys. 44, 045209 (2011).

  51. D. V. Fursa and I. Bray, Phys. Rev. A 52, 1279 (1995).

    ADS  Google Scholar 

  52. D. C. Cartwright, G. Csanak, S. Trajmar, and D. F. Register, Phys. Rev. A 45, 1602 (1992).

    ADS  Google Scholar 

  53. W. C. Fon, K. A. Berrington, and A. E. Kingston, J. Phys. B: At. Mol. Opt. Phys. 24, 2161 (1991).

    ADS  Google Scholar 

  54. W. C. Fon, K. P. Lim, K. Ratnavelu, and P. M. J. Sawey, J. Phys. B: At. Mol. Opt. Phys. 27, 1561 (1994).

    ADS  Google Scholar 

  55. W. C. Fon, K. P. Lim, K. A. Berrington, and T. G. Lee, J. Phys. B: At. Mol. Opt. Phys. 28, 1569 (1995).

    ADS  Google Scholar 

  56. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971).

    ADS  Google Scholar 

  57. N. M. Cann and A. J. Thakkar, J. Electron Spectrosc. Relat. Phenom. 123, 143 (2002).

    Google Scholar 

  58. N. Oda, F. Nishimura, and S. Tahira, J. Phys. Soc. Jpn. 33, 462 (1972).

    ADS  Google Scholar 

  59. C. B. Opal, E. C. Beaty, and W. K. Peterson, At. Data Nucl. Data Tables 4, 209 (1972).

    ADS  Google Scholar 

  60. T. W. Shyn and W. E. Sharp, Phys. Rev. A 19, 557 (1979).

    ADS  Google Scholar 

  61. R. Muller-Fiedler, K. Jung, and H. Ehrhardt, J. Phys. B: At. Mol. Phys. 19, 1211 (1986).

    ADS  Google Scholar 

  62. M. E. Rudd, Phys. Rev. A 44, 1644 (1991).

    ADS  Google Scholar 

  63. S. Tahira and N. Oda, J. Phys. Soc. Jpn. 35, 582 (1973).

    ADS  Google Scholar 

  64. I. D. Reid, Aust. J. Phys. 32, 231 (1979).

    ADS  Google Scholar 

  65. Y. Sakai, H. Tagashira, and S. Sakamoto, J. Phys. D: Appl. Phys. 10, 1035 (1977).

    ADS  Google Scholar 

  66. J. Lucas and H. T. Saelee, J. Phys. D: Appl. Phys. 8, 640 (1975).

    ADS  Google Scholar 

  67. H. N. Kücükarpaci, H. T. Saelee, and J. Lucas, J. Phys. D: Appl. Phys. 14, 9 (1981).

    ADS  Google Scholar 

  68. M. L. Chanin and G. D. Rork, Phys. Rev. 133, 1005 (1964).

    ADS  Google Scholar 

  69. J. M. Anderson, Phys. Fluids 7, 1517 (1964).

    ADS  Google Scholar 

  70. R. A. Stern, in Proceedings of the 6th International Conference on Phenomena in Ionized Gases, Paris, 1963, Vol. 1, p. 331.

  71. A. V. Phelps, J. L. Pack, and L. S. Frost, Phys. Rev. 117, 470 (1960).

    ADS  Google Scholar 

  72. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).

  73. A.V. Gurevich, Sov. Phys.–JETP 12, 904 (1961).

    Google Scholar 

  74. A. V. Gurevich and K. P. Zybin, Phys.–Usp. 44, 1119 (2001).

    Google Scholar 

  75. J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are deeply grateful to the reviewers of the Plasma Physics Reports journal. To bring the material in line with their remarks, we performed additional calculations, the results of which are compared with experimental data, and the presentation of the material was improved.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. I. Bochkov, L. P. Babich or I. M. Kutsyk.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkov, E.I., Babich, L.P. & Kutsyk, I.M. Dependence of the Generation Rate of High-Energy Electrons in Helium on the Electron Angular Scattering Model. Plasma Phys. Rep. 47, 1027–1041 (2021). https://doi.org/10.1134/S1063780X21090014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21090014

Keywords:

Navigation