Skip to main content
Log in

Multi-machine Scaling of the Amplitude of Density Fluctuations from the Size of the Tokamak

  • TOKAMAKS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The dependence was studied of the level of density fluctuations recorded at different devices on the minor and major radii of the tokamak. It is known that a high level of density fluctuations can negatively affect the operation of diagnostics, in particular, the plasma reflectometry diagnostic. The increase of density fluctuations decreases the quality of raw data by increasing the error of measuring the density profile and, when density fluctuations exceed the threshold value, it renders such measurements impossible. Based on experimental data obtained on devices with substantially different sizes, a dependence of the density fluctuation level on the major and minor tokamak radii was proposed. Since the main experiments were carried out in round limiter tokamaks in ohmic (OH) heating regimes, the extrapolation result is applicable, generally speaking, to installations of larger size with the same configuration and regimes. However, experiments with electron cyclotron heating at the T-10 tokamak also allow one to extend the obtained dependence to regimes with auxiliary heating. It was shown that the obtained dependence is applicable to limiter tokamaks Tore Supra and TFTR of larger size. The applicability of the dependence to installations with diverter configuration is discussed and the possible level of density fluctuations is extrapolated to the international reactor tokamak ITER that is being constructed in France.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. J. W. Conner and H. R. Wilson, Plasma Phys. Control. Fusion 36, 719 (1994). https://doi.org/10.1088/0741-3335/36/5/002

    Article  ADS  Google Scholar 

  2. R. Nazikian and E. Mazzucato, Rev. Sci. Instrum. 66, 392 (1995).

    Article  ADS  Google Scholar 

  3. V. A. Vershkov, S. V. Soldatov, D. A. Shelukhin, and A. O. Urazbaev, Instrum. Exp. Tech. 47, 182 (2004).

    Article  Google Scholar 

  4. C. M. Muscatello, C. Anderson, J. Anderson, A. Basile, R. L. Boivin, M. Duco, D. K. Finkenthal, A. Gattuso, J. Klabacha, G. J. Kramer, M. LeSher, L. Meneses, G. H. Neilson, R. O’Neill, W. A. Peebles, et al., Nucl. Fusion 60, 066005 (2020). https://doi.org/10.1088/1741-4326/ab7e46

  5. A. Krämer-Flecken, G. Anda, D. Dunai, G. Fuchert, J. Geiger, O. Grulke, X. Han, M. Otte, E. Trier, M. Vecsei, T. Windisch, S. Zoletnik, and the W7-X team, in Proceedings of the 14th International Reflectometry Workshop for Fusion Plasma Diagnostics, Lausanne, 2019, Report O.310. https://www.aug.ipp.mpg.de/IRW/IRW14/papers/310-IRW14-KramerFlecken-paper.pdf.

  6. V. A. Vershkov, D. A. Shelukhin, G. F. Subbotin, Yu. N. Dnestrovskij, A. V. Danilov, A. V. Melnikov, L. G. Eliseev, S. G. Maltsev, E. P. Gorbunov, D. S. Sergeev, S. V. Krylov, T. B. Myalton, D. V. Ryzhakov, V. M. Trukhin, V. V. Chistiakov, et al., Nucl. Fusion 55, 063014 (2015).

  7. V. A. Vershkov, V. V. Dreval, and S. V. Soldatov, Rev. Sci. Instrum. 70, 1700 (1999).

    Article  ADS  Google Scholar 

  8. E. Mazzucato and R. Nazikian, Rev. Sci. Instrum. 66, 1237 (1995).

    Article  ADS  Google Scholar 

  9. E. Z. Gusakov and A. Yu. Popov, Plasma Phys. Control. Fusion 44, 2327 (2002).

    Article  ADS  Google Scholar 

  10. D. A. Shelukhin, S. V. Soldatov, V. A. Vershkov, and A. O. Urazbaev, Plasma Phys. Rep. 32, 707 (2006).

    Article  ADS  Google Scholar 

  11. V. A. Vershkov, M. A. Borisov, G. F. Subbotin, D. A. Shelukhin, Yu. N. Dnestrovskii, A. V. Danilov, S. V. Cherkasov, E. P. Gorbunov, D. S. Sergeev, S. A. Grashin, S. V. Krylov, E. O. Kuleshin, T. B. Myal-ton, Yu. V. Skosyrev, and V. V. Chistiakov, Nucl. Fusion 53, 083014 (2013).

  12. V. A. Vershkov, D. A. Shelukhin, S. V. Soldatov, A. O. Urazbaev, S. A. Grashin, L. G. Eliseev, A. V. Mel-nikov, and the T-10 team, Nucl. Fusion 45, S203 (2005).

    Article  Google Scholar 

  13. V. A. Vershkov, M. A. Buldakov, G. F. Subbotin, D. A. Shelukhin, A. V. Melnikov, L. G. Eliseev, N. K. Kharchev, P. O. Khabanov, M. A. Drabinskiy, D. S. Sergeev, T. B. Myalton, V. M. Trukhin, A. V. Gorshkov, I. S. Belbas, and G. M. Asadulin, Nucl. Fusion 59, 066021 (2019).

  14. J. C. Hillesheim, J. C. DeBoo, W. A. Peebles, T. A. Carter, G. Wang, T. L. Rhodes, L. Schmitz, G. R. McKee, Z. Yan, G. M. Staebler, K. H. Burrell, E. J. Doyle, C. Holland, C. C. Petty, S. P. Smith, et al., Phys. Plasmas 20, 056115 (2013). https://doi.org/10.1063/1.4807123

  15. V. A. Vershkov, V. F. Andreev, A. A. Borschegovskiy, V. V. Chistyakov, M. M. Dremin, L. G. Eliseev, E. P. Gorbunov, S. A. Grashin, A. V. Khmara, A. Ya. Kislov, D. A. Kislov, A. D. Komarov, A. S. Kozachek, V. A. Krupin, L. I. Krupnik, et al., Nucl. Fusion 51, 094019 (2011).

  16. A. B. Altukhov, A. D. Gurchenko, E. Z. Gusakov, M. A. Irzak, P. Niskala, L. A. Esipov, T. P. Kiviniemi, and S. Leerink, Phys. Plasmas 25, 082305 (2018).

  17. A. B. Altukhov, A. D. Gurchenko, E. Z. Gusakov, M. A. Irzak, P. Niskala, L. A. Esipov, T. P. Kiviniemi, O. L. Krutkin, and S. Leerink, Phys. Plasmas 25, 112503 (2018).

  18. J. A. Heikkinen, S. J. Janhunen, T. P. Kiviniemi, and F. Ogando, J. Comput. Phys. 227, 5582 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Niskala, A. D. Gurchenko, E. Z. Gusakov, A. B. Altukhov, L. A. Esipov, M. Yu. Kantor, T. P. Kiviniemi, D. V. Kouprienko, T. Korpilo, S. I. Lashkul, S. Leerink, A. A. Perevalov, and R. Rochford, Plasma Phys. Control. Fusion 59, 044010 (2017).

  20. E. Z. Gusakov, V. V. Dyachenko, M. A. Irzak, S. A. Khitrov, A. N. Saveliev, and O. N. Shcherbinin, Plasma Phys. Control. Fusion 52, 075018 (2010).

  21. O. L. Krutkin, A. B. Altukhov, A. D. Gurchenko, E. Z. Gusakov, M. A. Irzak, L. A. Esipov, A. V. Sidorov, L. Chôné, T. P. Kiviniemi, S. Leerink, P. Niskala, C. Lechte, S. Heuraux, and G. Zadvitskiy, Nucl. Fusion 59, 096017 (2019).

  22. T. Gerbaud, F. Clairet, R. Sabot, A. Sirinelli, S. Heuraux, G. Leclert, and L. Vermare, Rev. Sci. Instrum. 77, 10E928 (2006).

  23. G. Hornung, F. Clairet, G. L. Falchetto, R. Sabot, H. Arnichand, and L. Vermare, Plasma Phys. Control. Fusion 55, 125013 (2013).

  24. S. F. Paul, N. Bretz, R. D. Durst, R. J. Fonck, Y. J. Kim, E. Mazzucato, and R. Nazikian, Phys. Fluids 4, 2922 (1992). https://doi.org/10.1063/1.860165

    Article  Google Scholar 

  25. R. D. Durst, R. J. Fonck, G. Cosby, H. Evensen, and S. F. Paul, Rev. Sci. Instrum. 63, 4907 (1992). https://doi.org/10.1063/1.1143546

    Article  ADS  Google Scholar 

  26. P. C. Efthimion, C. W. Barnes, M. G. Bell, H. Biglari, N. Bretz, P. H. Diamond, G. Hammett, W. Heidbrink, R. Hulse, D. Johnson, Y. Kusama, D. Mansfield, S. S. Medley, R. Nazikian, H. Park, et al., Phys. Fluids 3, 2315 (1991). https://doi.org/10.1063/1.859598

    Article  Google Scholar 

  27. F. Clairet, A. Sirinelli, L. Meneses, and JET Contributors, Nucl. Fusion 56, 126019 (2016). https://doi.org/10.1088/0029-5515/56/12/126019

  28. V. Nikolaeva, L. Guimarais, P. Manz, D. Carralero, M. E. Manso, U. Stroth, C. Silva, G. D. Conway, E. Seliunin, J. Vicente, D. Brida, D. Aguiam, J. Santos, A. Silva, ASDEX Upgrade Team, et al., Plasma Phys. Control. Fusion 60, 055009 (2018). https://doi.org/10.1088/1361-6587/aab4c5

Download references

Funding

This work was carried out for the contract of NRC Kurchatov Institute with SC Rosatom no. 1/19876-D from 27.07.2020. The analysis of results for the FT-2 tokamak was supported by the Russian Science Foundation, grant no. 17-12-01110. The database of the FT-2 tokamak used in this work was developed and it is supported in the framework of the state contract of the Ioffe Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vershkov.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershkov, V.A., Shelukhin, D.A., Subbotin, G.F. et al. Multi-machine Scaling of the Amplitude of Density Fluctuations from the Size of the Tokamak. Plasma Phys. Rep. 47, 637–646 (2021). https://doi.org/10.1134/S1063780X2107014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2107014X

Keywords:

Navigation