Skip to main content
Log in

The Solitary Dispersive Alfvén Wave in a Plasma with Two Distinct Electron Groups

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The electromagnetic polarization and the nonlinear soliton structure of dispersive Alfvén waves (DAWs) in a plasma with two different electron groups are investigated from the viewpoint multi-component fluid theory where the hot superthermal electron component is modeled by the kappa distribution. With the increase in the cold electron concentration, the electromagnetic polarization of DAW changes from the ones similar to the kinetic Alfvén wave to the ones similar to the inertial Alfvén wave. Meanwhile, the influence of the superthermal spectral index \(\kappa \) on the properties of DAW is reduced. Under the small amplitude assumption we find that there will be a soliton structure with positive potential amplitude. Correspondingly, the density of superthermal electrons will increase, while the density of cold electrons is decreased. But the total density variation strongly depends on the soliton velocity, the concentration of the cold electrons, and the value of kappa. The plausible application to the plasma sheet boundary layer is discussed from the numerical calculation of the nonlinear governing equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. B. M. Walsh, A. J. Hull, O. Agapitov, F. S. Mozer, and H. Li, J. Geophys. Res.: Space Phys. 125, e2019JA027577 (2020).

  2. C. S. Lin, J. L. Burch, S. D. Shawhan, and D. A. Gurnett, J. Geophys. Res.: Space Phys. 89, 925 (1984).

    Article  ADS  Google Scholar 

  3. R. L. Tokar and S. P. Gary, Geophys. Res. Lett. 11, 1180 (1984).

    Article  ADS  Google Scholar 

  4. H. Matsumoto, H. Kojima, T. Miyatake, Y. Omura, M. Okada, I. Nagano, and M. Tsutsui, Geophys. Res. Lett. 21, 2915 (1994).

    Article  ADS  Google Scholar 

  5. C. S. Lin, D. Winske, and R. L. Tokar, J. Geophys. Res.: Space Phys. 90, 8269 (1985).

    Article  ADS  Google Scholar 

  6. J. Labelle and R. A. Treumann, Space Sci. Rev. 101, 295 (2002).

    Article  ADS  Google Scholar 

  7. I. Y. Vasko, O. V. Agapitov, F. S. Mozer, J. W. Bonnell, A. V. Artemyev, V. V. Krasnoselskikh, G. Reeves, and G. Hospodarsky, Geophys. Res. Lett. 44, 4575 (2017).

    Article  ADS  Google Scholar 

  8. C. S. Dillard, I. Y. Vasko, F. S. Mozer, O. V. Agapitov, and J. W. Bonnell, Phys. Plasmas 25, 022905 (2018).

  9. S.V. Singh and G.S. Lakhina, Planet. Space Sci. 49, 107 (2001).

    Article  ADS  Google Scholar 

  10. A. Kakad, B. Kakad, C. Anekallu, G. Lakhina, Y. Omu-ra, and A. Fazakerley, J. Geophys. Res.: Space Phys. 121, 4452 (2016).

    Article  ADS  Google Scholar 

  11. R. J. Stefant, Phys. Fluids 13, 440 (1970).

    Article  ADS  Google Scholar 

  12. A. Hasegawa and L. Chen, Phys. Rev. Lett. 35, 370 (1975).

    Article  ADS  Google Scholar 

  13. A. Hasegawa, J. Geophys. Res. 81, 5083 (1976).

    Article  ADS  Google Scholar 

  14. C. K. Goertz and R. W Boswell, J. Geophys. Res.: Space Phys. 84, 7239 (1979).

    Article  ADS  Google Scholar 

  15. R. L. Lysak and C. W Carlson, Geophys. Res. Lett. 8, 269 (1981).

    Article  ADS  Google Scholar 

  16. E. J. Watt and R. Rankin, Phys. Rev. Lett. 102, 045002 (2009).

  17. A. V. Artemyev, R. Rankin, and M. Blanco, J. Geophys. Res.: Space Phys. 120, 10.305 (2015).

  18. P. A. Damiano, J. R. Johnson, and C. C. Chaston, J. Geophys. Res.: Space Phys. 121, 10.831 (2016).

  19. P. P. Malovichko, Kinemat. Phys. Celest. Bodies 29, 269 (2013).

    Article  ADS  Google Scholar 

  20. R. A. Treumann, M. Gudel, and A. O. Benz, Astron. Astrophys. 236, 242 (1990).

    ADS  Google Scholar 

  21. M. Berthomier, R. Pottelette, and R. A. Treumann, Phys. Plasmas 6, 467 (1999).

    Article  ADS  Google Scholar 

  22. D. Chakraborty and K. P. Das, Phys. Plasmas 10, 2236 (2003).

    Article  ADS  Google Scholar 

  23. V. M. Vasylinas, J. Geophys. Res. 73, 2839 (1968).

    Article  ADS  Google Scholar 

  24. R. L. Mace, G. Amery, and M. A. Hellberg, Phys. Plasmas 6, 44 (1999).

    Article  ADS  Google Scholar 

  25. B. Sahu, Phys. Plasmas 17, 122305 (2010).

  26. A. S. Bains, B. Li, and L.-D. Xia, Phys. Plasmas 21, 032123 (2014).

  27. G. Shrivastava, J. Shrivastava, and G. Ahirwar, AIP Conf. Proc. 1670, 030031 (2015).

  28. Y. Liu and L. Chen, Phys. Plasmas 24, 082303 (2017).

  29. A. S. Patneshwar and G. Ahirwar, AIP Conf. Proc. 2100, 020154 (2019).

  30. S. P. Christon, D. G. Mitchell, D. J. Williams, L. A. Frank, C. Y. Huang, and T. E. Eastman, J. Geophys. Res. 93, 2562 (1988).

    Article  ADS  Google Scholar 

  31. D. Summers and R. M. Thorne, Phys. Fluids B 3, 1835 (1991).

    Article  ADS  Google Scholar 

  32. T. K. Baluku and M. A. Hellberg, Phys. Plasmas 15, 123705 (2008).

  33. M. A. Hellberg, R. L. Mace, T. K. Baluku, I. Kourakis, and N. S. Saini, Phys. Plasmas 16, 094701 (2009).

  34. V. Pierrard and M. Lazar, Sol. Phys. 267, 153 (2010).

    Article  ADS  Google Scholar 

  35. G. Livadiotis, J. Geophys. Res.: Space Phys. 120, 1607 (2015).

    Article  ADS  Google Scholar 

  36. R. Gogoi and M. Khan, Phys. Plasmas 17, 112311 (2010).

  37. B. B. Kadomtsev, Plasma Turbulence (Academic, London, 1965).

    Google Scholar 

  38. A. Hasegawa and K. Mima, Phys. Rev. Lett. 37, 690 (1976).

    Article  ADS  Google Scholar 

  39. R. L. Lysak and W. Lotko, J. Geophys. Res.: Space Phys. 101, 5085, (1996).

    Article  ADS  Google Scholar 

  40. I. A. Khan, Z. Iqbal, and G. Murtaza, Eur. Phys. J. Plus 134, 80 (2019)

    Article  Google Scholar 

  41. P. K. Shukla, H. U. Rahman, and R. P. Sharma, J. Plasma Phys. 28, 125 (1981).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the International S&T Cooperation Program of China (no. 2015DFA61800), National Key Research and Development Program of China (2016YFD0600703-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Gong, B. & Hu, TP. The Solitary Dispersive Alfvén Wave in a Plasma with Two Distinct Electron Groups. Plasma Phys. Rep. 47, 715–724 (2021). https://doi.org/10.1134/S1063780X21070126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21070126

Keywords:

Navigation