Skip to main content
Log in

Dust Ion–Acoustic Shock Waves in Laboratory, Ionospheric, and Astrophysical Plasmas

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Methods of description of ion–acoustic shock waves in dusty plasma are presented. A new type of dust ion–acoustic shock waves related to anomalous dissipation is described. The main dissipative processes related to charging of dust particles, absorption of ions by dust particles, Coulomb collisions between ions and dust particles, and Landau damping are analyzed. Proposed methods of theoretical analysis enable explaining all major specific features of dust ion–acoustic shock waves observed in the laboratory experiments. The shock waves of this type are present in the near-Earth plasma and the universe. Their investigation is possible in active ionospheric experiments of the Fluxus type. Important astrophysical problems in which the appearance of shock waves under consideration should be taken into consideration are the shock waves of supernovas, evolution of Local Interstellar medium, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. V. N. Tsytovich, Phys.–Usp. 40, 53 (1997).

    Google Scholar 

  2. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002).

  3. R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 23.

    Google Scholar 

  4. S. I. Popel, M. Y. Yu, and V. N. Tsytovich, Phys. Plasmas 3, 4313 (1996).

    ADS  Google Scholar 

  5. S. I. Popel, V. N. Tsytovich, and M. Y. Yu, Astrophys. Space Sci. 256, 107 (1998).

    ADS  Google Scholar 

  6. M. Rosenberg, Planet. Space Sci. 41, 229 (1993).

    ADS  Google Scholar 

  7. F. F. Chen, in Plasma Diagnostic Techniques, Ed. by R. H. Huddlestone and S. L. Leonard (Academic, New York, 1965).

    Google Scholar 

  8. M. S. Barnes, J. H. Keller, J. C. Forster, J. A. O’Neill, and D. K. Coultas, Phys. Rev. Lett. 68, 313 (1992).

    ADS  Google Scholar 

  9. S. A. Khrapak, A. V. Ivlev, G. E. Morfill, and N. Thomas, Phys. Rev. E 66, 046414 (2002).

  10. E. C. Whipple, Rep. Prog. Phys. 49, 1197 (1981).

    ADS  Google Scholar 

  11. L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962).

    MATH  Google Scholar 

  12. S. I. Popel and M. Y. Yu, Contrib. Plasma Phys. 35, 103 (1995).

    ADS  Google Scholar 

  13. S. I. Popel and M. Y. Yu, Phys. Rev. E 50, 3060 (1994).

    ADS  Google Scholar 

  14. V. N. Tsytovich and O. Havnes, Comments Plasma Phys. Controlled Fusion 15, 2673 (1993).

    Google Scholar 

  15. T. V. Losseva, S. I. Popel, A. P. Golub’, Yu. N. Izvekova, and P. K. Shukla, Phys. Plasmas 19, 013703 (2012).

  16. A. E. Dubinov, Plasma Phys. Rep. 35, 991 (2009).

    ADS  Google Scholar 

  17. E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flows (Elsevier, New York, 1987).

    MATH  Google Scholar 

  18. S. I. Popel, A. A. Gisko, A. P. Golub’, T. V. Losseva, and R. Bingham, Plasma Phys. Rep. 27, 785 (2001).

    ADS  Google Scholar 

  19. V. N. Tsytovich and U. de Angelis, Phys. Plasmas 6, 1093 (1999).

    ADS  MathSciNet  Google Scholar 

  20. Y. Nakamura, H. Bailung, and P. K. Shukla, Phys. Rev. Lett. 83, 1602 (1999).

    ADS  Google Scholar 

  21. Q.-Z. Luo, N. D’Angelo, and R. L. Merlino, Phys. Plasmas 6, 3455 (1999).

    ADS  Google Scholar 

  22. S. I. Popel, A. P. Golub’, T. V. Losseva, and R. Bingham, JETP Lett. 73, 223 (2001).

    ADS  Google Scholar 

  23. S. I. Popel, A. P. Golub’, T. V. Losseva, R. Bingham, and S. Benkadda, Phys. Plasmas 8, 1497 (2001).

    ADS  Google Scholar 

  24. S. I. Popel, A. P. Golub’, T. V. Losseva, R. Bingham, and S. Benkadda, Plasma Phys. Rep. 27, 455 (2001).

    ADS  Google Scholar 

  25. S. Benkadda, P. Gabbai, V. N. Tsytovich, and A. Verga, Phys. Rev. E 53, 2717 (1996).

    ADS  Google Scholar 

  26. Q.-Z. Luo, N. D’Angelo, and R. L. Merlino, Phys. Plasmas 6, 3455 (1999).

    ADS  Google Scholar 

  27. R. L. Merlino, A. Barkan, C. Thompson, and N. D’Angelo, Phys. Plasmas 5, 1607 (1998).

    ADS  Google Scholar 

  28. S. I. Popel, S. N. Andreev, A. A. Gisko, A. P. Golub’, and T. V. Losseva, Plasma Phys. Rep. 30, 284 (2004).

    ADS  Google Scholar 

  29. S. I. Popel, T. V. Losseva, R. L. Merlino, S. N. Andreev, and A. P. Golub’, Phys. Plasmas 12, 054501 (2005).

  30. S. I. Popel, T. V. Losseva, A. P. Golub’, R. L. Merlino, and S. N. Andreev, Contrib. Plasma Phys. 45, 461 (2005).

    ADS  Google Scholar 

  31. A. P. Nefedov, O. F. Petrov, and V. E. Fortov, Phys.-Usp. 40, 1163 (1997).

    Google Scholar 

  32. D. Samsonov, G. Morfill, H. Thomas, T. Hagl, H. Rothermel, V. Fortov, A. Lipaev, V. Molotkov, A. Nefedov, O. Petrov, A. Ivanov, and S. Krikalev, Phys. Rev. E 67, 036404 (2003).

  33. Y. Nakamura and A. Sarma, Phys. Plasmas 8, 3921 (2001).

    ADS  Google Scholar 

  34. B. A. Klumov, S. I. Popel, and R. Bingham, JETP Lett. 72, 364 (2000).

    ADS  Google Scholar 

  35. B. A. Klumov, G. E. Morfill, and S. I. Popel, J. Exp. Theor. Phys. 100, 152 (2005).

    ADS  Google Scholar 

  36. R. Bingham, V. D. Shapiro, V. N. Tsytovich, U. de Angelis, M. Gilman, and V. I. Shevchenko, Phys. Fluids B 3, 1728 (1991).

    ADS  Google Scholar 

  37. B. G. Gavrilov, A. I. Podgorny, I. M. Podgorny, D. B. Sobyanin, J. I. Zetzer, R. E. Erlandson, C.‑I. Meng, and B. J. Stoyanov, Geophys. Res. Lett. 26, 1549 (1999).

    ADS  Google Scholar 

  38. V. V. Adushkin, Yu. I. Zetser, B. G. Gavrilov, I. V. Gryts’kiv, Yu. H. Kiselev, Yu. A. Romanovskii, V. A. Rybakov, Ch.-I. Meng, R. Erlandson, and B. Stoyanov, Dokl. Akad. Nauk 361, 818 (1998).

    Google Scholar 

  39. S. I. Popel and V. N. Tsytovich, Astrophys. Space Sci. 264, 219 (1999).

    ADS  Google Scholar 

  40. Yu. P. Raizer, Sov. Phys.–JETP 10, 769 (1960).

    Google Scholar 

  41. E. Dwek and R. G. Arendt, Annu. Rev. Astron. Astrophys. 30, 11 (1992).

    ADS  Google Scholar 

  42. A. Evans, The Dusty Universe (Wiley, New York, 1994).

    Google Scholar 

  43. S. A. Kaplan and S. B. Pikel’ner, Annu. Rev. Astron. Astrophys. 12, 113 (1974).

    ADS  Google Scholar 

  44. S. A. Kaplan and S. B. Pikel’ner, The Interstellar Medium (Nauka, Moscow, 1979; Harvard Univ. Press, Cambridge, MA, 1982).

  45. D. P. Cox and R. J. Reynolds, Annu. Rev. Astron. Astrophys. 25, 303 (1987).

    ADS  Google Scholar 

  46. I. B. Kosarev, T. V. Loseva, I. V. Nemtchinov, and S. I. Popel, Astron. Astrophys. 287, 470 (1994).

    ADS  Google Scholar 

  47. A. D. Chernin and Yu. N. Efremov, in Violent Star Formation: From 30 Doradus to QSSO’s, Ed. by G. Tenorio-Tagle (Cambridge Univ. Press, Cambridge, 1994), p. 65.

    Google Scholar 

  48. Yu. N. Efremov and A. D. Chernin, Vistas Astron. 38, 165 (1994).

    ADS  Google Scholar 

  49. A. D. Chernin, Yu. N. Efremov, and P. A. Voinovich, Mon. Not. R. Astron. Soc. 275, 313 (1995).

    ADS  Google Scholar 

  50. S. Yoshika and S. Ikeuchi, Astrophys. J. 360, 352 (1990).

    ADS  Google Scholar 

  51. D. I. Barnausov, P. A. Voinovich, and A. D. Chernin, Pis’ma Astron. Zh. 18, 1095 (1992).

    ADS  Google Scholar 

  52. P. A. Voinovich and A. D. Chernin, Pis’ma Astron. Zh. 21, 926 (1995).

    ADS  Google Scholar 

  53. V. A. Rybakov, V. I. Artem’ev, S. A. Medvedyuk, and A. D. Chernin, Pis’ma Astron. Zh. 24, 874 (1998).

    ADS  Google Scholar 

  54. B. A. Remington, R. P. Drake, H. Takabe, and D. Arnett, Phys. Plasmas 7, 1641 (2000).

    ADS  Google Scholar 

  55. N. G. Bochkarev, Local Interstellar Medium (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  56. V. V. Adushkin, Yu. I. Zetser, Yu. N. Kiselev, I. V. Nemchinov, and B. D. Khristoforov, Dokl. Akad. Nauk 331, 486 (1993).

    Google Scholar 

  57. D. Samsonov, S. K. Zhdanov, R. A. Quinn, S. I. Popel, and G. E. Morfill, Phys. Rev. Lett. 92, 255004 (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Losseva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losseva, T.V., Popel, S.I. & Golub’, A.P. Dust Ion–Acoustic Shock Waves in Laboratory, Ionospheric, and Astrophysical Plasmas. Plasma Phys. Rep. 46, 1089–1107 (2020). https://doi.org/10.1134/S1063780X20110045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20110045

Keywords:

Navigation