Skip to main content
Log in

Study of the Compression Dynamics of a Fiber Liner with a Deuterated Target Mounted on the Axis

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Compression of a fiber array with a deuterated target mounted on its axis is studied at the Angara-5-1 facility (3.5 MA, 100 ns). Cylindrical arrays with an initial diameter of 12 mm made from polypropylene fibers with a diameter of 13.4 µm are used. The number of fibers varied from 30 to 120. The target with the density of 0.08–0.2 g/cm3 and the diameter of 1 mm was made on the basis of deuterated polyethylene. A 10‑frame ultra-high-speed X-ray camera, optical slit scans, an integral X-ray pinhole camera, vacuum X-ray diodes, a crystal spectrograph, and neutron detectors are used to measure the plasma parameters in the Z‑pinch. It is found that the dynamics of plasma compression and evolution of local plasma formations, which are sources of neutrons and soft X-ray emission in the energy range of E > 150 eV, depend on the load configuration: the number of fibers, diameter, and density of the deuterated target. Efficient compression of the liner plasma, high concentration and temperature of the compressed target state, as well as the highest neutron yield (8 × 109 neutron/pulse) are observed in experiments with arrays with the fiber number of 60, inside which the target with the diameter of 1 mm and density of 0.2 g/cm3 was placed. The electron density and temperature of the hot plasma in local formations are estimated as ne ≈ 1021 cm–3, Te ≈ 1 keV, respectively. The average neutron energy was 2.6 ± 0.2 MeV. The intensity of the plasma formation \(\dot {m}\) [in µg/(cm2 ns)] of polypropylene fibers under the action of the discharge current of the facility is determined in experiments with fiber arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. V. Vikhrev and V. V. Ivanov, Sov. Phys.–Dokl. 30, 492 (1985).

    ADS  Google Scholar 

  2. V. V. Yan’kov, Sov. J. Plasma Phys. 17, 305 (1991).

    Google Scholar 

  3. Yu. L. Bakshaev, P. I. Blinov, V. V. Vikhrev, E. M. Gordeev, S. A. Dan’ko, V. D. Korolev, S. F. Medovshchikov, S. L. Nedoseev, E. A. Smirnova, V. I. Tumanov, A. S. Chernenko, and A. Yu. Shashkov, Plasma Phys. Rep. 27, 1039 (2001).

    Article  ADS  Google Scholar 

  4. Yu. L. Bakshaev, P. I. Blinov, V. V. Vikhrev, S. A. Dan’ko, V. D. Korolev, B. R. Meshcherov, S. L. Nedoseev, E. A. Smirnova, G. I. Ustroev, A. S. Chernenko, and A. Yu. Shashkov, Plasma Phys. Rep. 32, 531 (2006).

    Article  ADS  Google Scholar 

  5. A. A. Akunets, S. S. Anan’ev, Yu. L. Bakshaev, P. I. Blinov, V. A. Bryzgunov, V. V. Vikhrev, I. V. Volobuev, S. A. Dan’ko, A. A. Zelenin, E. D. Kazakov, V. D. Korolev, B. R. Meshcherov, S. L. Nedoseev, V. G. Pimenov, E. A. Smirnova, et al., Plasma Phys. Rep. 36, 699 (2010).

    Article  ADS  Google Scholar 

  6. Yu. L. Bakshaev, V. V. Bryzgunov, V. V. Vikhrev, I. V. Volobuev, S. A. Dan’ko, E. D. Kazakov, V. D. Korolev, D. Klir, A. D. Mironenko-Marenkov, V. G. Pimenov, E. A. Smirnova, and G. I. Ustroev, Plasma Phys. Rep. 40, 437 (2014).

    Article  ADS  Google Scholar 

  7. V. V. Aleksandrov, V. A. Bryzgunov, E. V. Grabovskii, A. N. Gritsuk, I. V. Volobuev, E. D. Kazakov, Yu. G. Kalinin, V. D. Korolev, Ya. N. Laukhin, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, V. G. Pimenov, E. A. Smirnova, G. I. Ustroev, et al., Plasma Phys. Rep. 42, 355 (2016).

    Article  ADS  Google Scholar 

  8. V. V. Aleksandrov, G. S. Volkov, E. V. Grabovskii, A. N. Gritsuk, I. V. Volobuev, Yu. G. Kalinin, V. D. Korolev, Ya. N. Laukhin, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, V. G. Pimenov, E. A. Smirnova, and I. N. Frolov, Plasma Phys. Rep. 45, 805 (2019).

    Article  ADS  Google Scholar 

  9. Z. A. Al’bikov, E. P. Velikhov, A. I. Veretennikov, V. A. Glukhikh, E. V. Grabovskii, G. M. Gryaznov, O. A. Gusev, G. I. Zhemchuzhnikov, V. I. Zaitsev, O. A. Zolotovskii, Yu. A. Istomin, O. V. Kozlov, I. S. Krasheninnikov, S. S. Kurochkin, G. M. Latmanizova, et al., At. Energ. 68, 26 (1990).

    Google Scholar 

  10. O. N. Krokhin, V. V. Nikulin, and L. V. Volobuev, Czech. J. Phys., Suppl. 54, 359 (2004).

    Article  Google Scholar 

  11. V. V. Aleksandrov, E. V. Grabovskii, A. N. Gritsuk, Ya. N. Laukhin, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, P. V. Sasorov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 36, 482 (2010).

    Article  ADS  Google Scholar 

  12. V. V. Aleksandrov, V. A. Barsuk, E. V. Grabovskii, A. N. Gritsuk, G. G. Zukakishvili, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, and P. V. Sasorov, Plasma Phys. Rep. 35, 200 (2009).

    Article  ADS  Google Scholar 

  13. V. V. Aleksandrov, A. G. Alekseev, V. N. Amosov, M. M. Basko, G. S. Volkov, E. V. Grabovskii, A. V. Krasil’nikov, G. M. Oleinik, I. N. Rastyagaev, P. V. Sasorov, A. A. Samokhin, V. P. Smirnov, and I. N. Frolov, Plasma Phys. Rep. 29, 1034 (2003).

    Article  ADS  Google Scholar 

  14. V. V. Aleksandrov, A. V. Branitskii, G. S. Volkov, E. V. Grabovskii, M. V. Zurin, S. L. Nedoseev, G. M. Oleinik, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 27, 89 (2001).

    Article  ADS  Google Scholar 

  15. E. V. Grabovskii, V. V. Aleksandrov, G. S. Volkov, V. A. Gasilov, A. N. Gribov, A. N. Gritsuk, S. V. Dyachenko, V. I. Zaitsev, S. F. Medovshchikov, K. N. Mitrofanov, Ya. N. Laukhin, G. M. Oleinik, O. G. Ol’khovskaya, A. A. Samokhin, P. V. Sasorov, et al., Plasma Phys. Rep. 34, 815 (2008).

    Article  ADS  Google Scholar 

  16. M. E. Cuneo, E. M. Waisman, S. V. Lebedev, J. P. Chittenden, W. A. Stygar, G. A. Chandler, R. A. Vesey, E. P. Yu, T. J. Nash, D. E. Bliss, G. S. Sarkisov, T. C. Wagoner, G. R. Bennett, D. B. Sinars, J. L. Porter, et al., Phys. Rev. E 71, 046406 (2005).

  17. G. G. Zukakishvili, K. N. Mitrofanov, V. V. Aleksandrov, E. V. Grabovskii, G. M. Oleinik, I. Yu. Porofeev, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Rep. 31, 908 (2005).

    Article  ADS  Google Scholar 

  18. S. V. Lebedev, F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, and M. G. Haines, Phys. Plasmas 9, 2293 (2002).

    Article  ADS  Google Scholar 

  19. C. J. Garasi, D. E. Bliss, T. A. Mehlhorn, B. V. Oliver, A. C. Robinson, and G. S. Sarkisov, Phys. Plasmas 11, 2729 (2004).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 18-02-00201-a and 20-02-00007-a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. D. Korolev or K. N. Mitrofanov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, O.N., Aleksandrov, V.V., Volkov, G.S. et al. Study of the Compression Dynamics of a Fiber Liner with a Deuterated Target Mounted on the Axis. Plasma Phys. Rep. 46, 967–977 (2020). https://doi.org/10.1134/S1063780X20100013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20100013

Keywords:

Navigation