Skip to main content
Log in

Evaluation of the Electric Field Strength in a Pre-Breakdown Ionization Wave in a Long Discharge Tube from the Emission Spectrum

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The paper presents the results of studying the characteristics of a slow ionization wave (IW) arising at the initial stage of breakdown in a long discharge tube under reduced pressure. The discharge tube is a Philips TUV-30W mercury lamp with an electrode spacing of 80 cm and an inner diameter of 23 mm. The tube is filled with argon at a pressure of 2–4 Torr (nominal data) and mercury vapor. One of the electrodes is grounded, and, to the second one, positive or negative voltage pulses with an amplitude of 2 kV, a leading edge duration of ≈0.5 μs, and a repetition frequency of 1 Hz are applied. The IW velocity and the time dependence of the intensities of the Ar, Ar+, and Hg lines in the IW at different distances from the high-voltage electrode are measured. It is shown that the velocity of a positive IW (3 × 107–5 × 107 cm/s) is higher than the velocity of a negative IW (1 × 107–1.8 × 107 cm/s). The magnitude of the electric field in the front of an IW is evaluated from the comparison of the measured and calculated intensity ratios of the Ar, Ar+, and Hg lines. It is shown that, in a positive IW, the magnitude of the reduced electric field (260–450 Td) is noticeably larger than in a negative one (120–165 Td).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryav-tsev, and I. V. Filyugin, Phys.-Usp. 37, 247 (1994).

    Article  ADS  Google Scholar 

  2. R. Kh. Amirov, E. I. Asinovskii, V. V. Markovets, A. S. Panfilov, and I. S. Samoilov, in Low-Temperature Plasma, Ed. by A. A. Ovsyannikov, V. S. Engel’sht, Yu. A. Lebedev (Nauka, Novosibirsk, 1994), Vol. 9, p. 373 [in Russian].

    Google Scholar 

  3. L. M. Vasilyak, E. I. Asinovskii, and I. S. Samoilov, in Encyclopedia of Low-Temperature Plasma, Introductional Volume, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Part 2, p. 225 [in Russian].

  4. A. N. Lagarkov and I. M. Rutkevich, Ionization Waves in Electrical Breakdown of Gases (Springer-Verlag, 1993).

    Google Scholar 

  5. S. M. Starikovskaia, N. B. Anikin, S. V. Pancheshnyi, D. V. Zatsepin, and A. Yu. Starikovskii, Plasma Sources Sci. Technol. 10, 344 (2001).

    Article  ADS  Google Scholar 

  6. K. Takashima, I. V. Adamovich, U. Czarnetzki, and D. Luggenholscher, Plasma Chem. Plasma Process. 32, 471 (2012).

    Article  Google Scholar 

  7. R. Seeliger and R. Rock, Z. Phys. 110, 717 (1938).

    Article  ADS  Google Scholar 

  8. W. Bartholomeyczeyk, Ann. Phys. 36, 485 (1939).

    Article  Google Scholar 

  9. A. V. Nedospasov and A. E. Novik, Sov. Tech. Phys. 5, 1261 (1961).

    Google Scholar 

  10. R. E. Horstman and F. M. O. Lansink, J. Phys. D: A-ppl. Phys. 21, 1130 (1988).

    Article  ADS  Google Scholar 

  11. W. J. M. Brok, J. van Dijk, M. D. Bowden, J. J. A. M. van der Mullen, and G. M. W. Kroesen, J. Phys. D: -Appl. Phys. 36, 1967 (2003).

    Article  ADS  Google Scholar 

  12. M. F. Gendre, M. D. Bowden, and H. Haverlag, in Proceedings of Frontiers in Low Temperature Plasma Diagnostics V, Ed. by S. De Benedictis and G. Dilecce (Specchia, 2003), p. 295.

  13. M. F. Gendre, M. D. Bowden, H. C. M. van den Nieuwenhuize, M. Haverlag, J. W. A. M. Gielen, and G. M. W. Kroesen, IEEE Trans. Plasma Sci. 33, 262 (2005).

    Article  ADS  Google Scholar 

  14. W. J. M. Brok, M. F. Gendre, and J. J. A. M. van der Mullen, J. Phys. D: Appl. Phys. 40, 156 (2007).

    Article  ADS  Google Scholar 

  15. W. J. M. Brok, M. F. Gendre, M. Haverlag, and J. J. A. M. van der Mullen, J. Phys. D: Appl. Phys 40, 3931 (2007).

    Article  ADS  Google Scholar 

  16. R. Langer, R. Garner, A. Hilscher, R. Tidecks, and S. Horn, J. Phys. D: Appl. Phys. 41, 144011 (2008).

    Article  ADS  Google Scholar 

  17. M. F. Gendre, M. Haverlag, and G. M. W. Kroesen, J. Phys. D: Appl. Phys. 43, 234004 (2010).

    Article  ADS  Google Scholar 

  18. N. A. Dyatko, Yu. Z. Ionikh, A. V. Meshchanov, A. P. Napartovich, and A. I. Shishpanov, Plasma Phys. Rep. 37, 505 (2011).

    Article  ADS  Google Scholar 

  19. A. V. Meshchanov, Yu. Z. Ionikh, A. I. Shishpanov, and S. A. Kalinin, Plasma Phys. Rep. 42, 978 (2016).

    Article  ADS  Google Scholar 

  20. A. I. Shishpanov, A. V. Meshchanov, S. A. Kalinin, and Y. Z. Ionikh, Plasma Sources Sci. Technol. 26, 065017 (2017).

    Article  ADS  Google Scholar 

  21. S. A. Kalinin, M. A. Kapitonova, R. M. Matveev, A. V. Meshchanov, and Yu. Z. Ionikh, Plasma Phys. Rep. 44, 1009 (2018).

    Article  ADS  Google Scholar 

  22. S. A. Kalinin, A. V. Meshchanov, A. I. Shishpanov, and Yu. Z. Ionikh, Plasma Phys. Rep. 44, 345 (2018).

    Article  ADS  Google Scholar 

  23. P. Paris, M. Aints, M. Laan, and F. Valk, J. Phys. D: Appl. Phys. 37, 1179 (2004).

    Article  ADS  Google Scholar 

  24. P. Paris, M. Aints, F. Valk, T. Plank, A. Haljaste, and K. V. Kozlov, J. Phys. D: Appl. Phys. 38, 3894 (2005).

    Article  ADS  Google Scholar 

  25. F. Valk, M. Aints, P. Paris, T. Plank, J. Maksimov, and A. Tamm, J. Phys. D: Appl. Phys. 43, 385202 (2010).

    Article  ADS  Google Scholar 

  26. I. Gallimberti, J. K. Hepworths, and R. C. Klewe, J. Phys. D: Appl. Phys. 7, 880 (1974).

    Article  ADS  Google Scholar 

  27. S. V. Pancheshnyi, S. M. Starikovskaia, and A. Yu. Starikovskii, J. Phys. D: Appl. Phys. 32, 2219 (1999).

    Article  ADS  Google Scholar 

  28. B.-D. Huang, E. Carbone, K. Takashima, X.-M. Zhu, U. Czarnetzki, and Y.-K. Pu, J. Phys. D: Appl. Phys. 51, 225202 (2018).

    Article  ADS  Google Scholar 

  29. K. V. Kozlov, H.-E. Wagner, R. Brandenburg, and P. Michel, J. Phys. D: Appl. Phys. 34, 3164 (2001).

    Article  ADS  Google Scholar 

  30. T. Hoder, M. Simek, Z. Bonaventura, V. Prukner, and F. J. Gordillo-Vazquez, Plasma Sources Sci. Technol. 25, 045021 (2016).

    Article  ADS  Google Scholar 

  31. A. Brisset, K. Gazeli, L. Magne, S. Pasquiers, P. Jeanney, E. Marode, and P. Tardiveau, Plasma Sources Sci. Technol. 28, 055016 (2019).

    Article  ADS  Google Scholar 

  32. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

  33. J. F. B. E. Lawler, J. J. Curry, and G. G. Lister, J. Phys. D: Appl. Phys. 33, 2522008 (2000).

    Article  Google Scholar 

  34. V. A. Lisovskiy, S. D. Yakovinand, and V. D. Yegorenkov, J. Phys. D: Appl. Phys. 33, 2722 (2000).

    Article  ADS  Google Scholar 

  35. W. R. L. Thomas, J. Phys. B: At. Mol. Phys. 2, 551 (1969).

    Article  ADS  Google Scholar 

  36. H. Tagashira, Y. Sakai, and S. Sakamoto, J. Phys. D: Appl. Phys. 10, 1051 (1977).

    Article  ADS  Google Scholar 

  37. N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, and M. D. Taran, High Temp. 22, 795 (1984).

    Google Scholar 

  38. A. Yanguas-Gil, J. Cotrino, and L. L. Alves, J. Phys. D: Appl. Phys. 38, 1588 (2005).

    Article  ADS  Google Scholar 

  39. J. A. Sanchez, F. Blanco, G. Garcia, and J. Campos, Phys. Scr. 39, 243 (1989).

    Article  ADS  Google Scholar 

  40. J. Mirić, I. Simonović, Z. Lj. Petrović, R. D. White, and S. Dujko, Eur. Phys. J. D 71, 289 (2017).

    Article  ADS  Google Scholar 

  41. R. J. Anderson, E. T. P. Lee, and C. C. Lin, Phys. Rev. 157, 31 (1967).

    Article  ADS  Google Scholar 

  42. NIST Atomic Spectra Database. https://www.nist.gov/pml/atomic-spectra-database.

  43. S. E. Frish and A. N. Klyucharev, Opt. Spektr. 22, 174 (1967).

  44. A. A. Radtsig and B. M. Smirnov, Parameters of Atoms and Atomic Ions (Energoatomizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  45. J. E. Sansonetti and W. C. Martin, J. Phys. Chem. Ref. Data 34, 1559 (2005).

    Article  ADS  Google Scholar 

  46. V. Vujnović and W. L. Wiese, J. Phys. Chem. Ref. Data 21, 919 (1992).

    Article  ADS  Google Scholar 

  47. T. D. Nguyen and N. Sadeghi, Phys. Rev. A 18, 1388 (1978).

    Article  ADS  Google Scholar 

  48. N. Sadeghi, D. W. Setser, A. Francis, U. Czarnetzki, and H. F. Döbele, J. Chem. Phys. 115, 3144 (2001).

    Article  ADS  Google Scholar 

  49. J. E. Chilton, J. B. Boffard, R. S. Schappe, and C. C. Lin, Phys. Rev. A 57, 267 (1998).

    Article  ADS  Google Scholar 

  50. J. M. Hammer and C. P. Wen, J. Chem. Phys. 46, 1225 (1967).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-02-00288.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. A. Dyatko or Yu. Z. Ionikh.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyatko, N.A., Ionikh, Y.Z., Kalinin, S.A. et al. Evaluation of the Electric Field Strength in a Pre-Breakdown Ionization Wave in a Long Discharge Tube from the Emission Spectrum. Plasma Phys. Rep. 46, 200–216 (2020). https://doi.org/10.1134/S1063780X20020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20020026

Keywords:

Navigation