Skip to main content
Log in

Beaded Discharges Formed under Pulsed Breakdowns of Air and Nitrogen

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The mode of a pulsed discharge in a nonuniform electric field is investigated at which bright plasma bunches with a beaded structure are generated in atmospheric-pressure air. Using an ICCD camera, it is found that, at centimeter gap lengths and a voltage pulse duration of ≈300 ns, the beaded structure can be observed with a probability close to 100% within time intervals from a few nanoseconds to several tens of nanoseconds. The beaded structure can also be observed in the time-integrated photographs of the discharge gap, but with a low probability. It is shown that individual beads arise in the point-to-plane gap after the diffuse stage of the discharge and start from the electrode with a small curvature radius. It is established that the spark channel bridges the gap by passing through the formed beads. The glowing beads are again observed in the final stage of the discharge, when the discharge current and, accordingly, the intensity of spark emission decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. P. Pasko, Plasma Phys. Controlled Fusion 50, 4050 (2008).

    Article  ADS  Google Scholar 

  2. Y. P. Raizer, G. M. Milikh, and M. N. Shneider, J. Geophys. Res. 115, E42 (2010).

    Article  Google Scholar 

  3. M. Fullekrug, D. Diver, J.-L. Pincon, J.-B. Renard, A. D. R. Phelps, A. Bourdon, C. Helling, E. Blanc, F. Honary, M. Kosch, R. G. Harrison, J.-A. Sauvaud, M. Lester, M. Rycroft, R. B. Horne, et al., Surv. Geophys. 34, 1 (2013).

    Article  ADS  Google Scholar 

  4. D. Siingh, R. P. Singh, S. Kumar, A. K. Singh, A. K. Singh, M. N. Patil, and Sh. Singh, J. Atmos. Solar-Terr. Phys. 134, 78 (2015).

    Article  ADS  Google Scholar 

  5. O. Chanrion, T. Neubert, A. Mogensen, Y. Yair, M. Stendel, R. Singh, and D. Siingh, Geophys. Rev. Lett. 44, 496 (2017).

    Article  ADS  Google Scholar 

  6. M. Uman, J. Atmos. Terr. Phys. 24, 43 (1962).

    Article  ADS  Google Scholar 

  7. J. D. Barry, Ball Lightning and Bead Lightning: Extreme Forms of Atmospheric Electricity (Plenum, New York, 1980).

    Book  Google Scholar 

  8. G. K. Tumakaev, Tech. Phys. 40, 662 (1995).

    Google Scholar 

  9. A. M. Boichenko, Plasma Phys. Rep. 22, 917 (1996).

    ADS  Google Scholar 

  10. M. A. Uman and V. A. Rakov, Lightning Physics and Effects (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  11. G. O. Ludwig and M. M. F. Saba, Phys. Plasmas 12, 093509 (2005).

    Article  ADS  Google Scholar 

  12. V. L. Bychkov, in Proceedings of the 15th Russian Conference on Cold Nuclear Transmutation of Chemical Elements and Ball Lightning, Sochi, 2008, p. 139.

  13. V. F. Tarasenko, D. V. Beloplotov, E. Kh. Baksht, A. G. Burachenko, and M. I. Lomaev, Opt. Atmos. Okeana 28, 661 (2015).

    Google Scholar 

  14. S. P. A. Vayanganie, V. Cooray, M. Rahman, P. Hettiarachchi, O. Diaz, and M. Fernando, Phys. Lett. A 380, 816 (2016).

    Article  ADS  Google Scholar 

  15. V. F. Tarasenko and D. V. Beloplotov, Opt. Atmos. Okeana 31, 214 (2018).

    Google Scholar 

  16. Generation of Runaway Electrons and X-rays in High Pressure Gases, Vol. 1: Techniques and Measurements, Ed. by V. F. Tarasenko (Nova Science, New York, 2016).

  17. N. Y. Babaeva, C. Zhang, J. Qiu, X. Hou, V. F. Tara-senko, and T. Shao, Plasma Sources Sci. Technol. 26, 085008 (2017).

    Article  ADS  Google Scholar 

  18. J. R. Dwyer, H. K. Rassoul, M. Al-Dayeh, L. Caraway, A. Chrest, B. Wright, and D. M. Jordan, Geophys. Rev. Lett. 32, L01803 (2005).

  19. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1997).

  20. V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, Tech. Phys. 55, 210 (2010).

    Article  Google Scholar 

  21. V. F. Tarasenko, E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and D. A. Sorokin, Tech. Phys. 58, 1115 (2013).

    Article  Google Scholar 

  22. Runaway Electrons Preionized Diffuse Discharges, Ed. by V. F. Tarasenko (Nova Science, New York, 2014).

    Google Scholar 

  23. H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964).

    Google Scholar 

  24. T. Shao, V. F. Tarasenko, Ch. Zhang, M. I. Lomaev, D. A. Sorokin, P. Yan, A. V. Kozyrev, and E. K. Baksht, J. Appl. Phys. 111, 023304 (2012).

    Article  ADS  Google Scholar 

  25. G. V. Naidis, V. F. Tarasenko, N. Yu. Babaeva, and M. I. Lomaev, Plasma Sources Sci. Technol. 27, 013001 (2018).

    Article  ADS  Google Scholar 

  26. V. F. Tarasenko, G. V. Naidis, D. V. Beloplotov, I. D. Kostyrya, and N. Yu. Babaeva, Plasma Phys. Rep. 44, 746 (2018).

    Article  ADS  Google Scholar 

  27. E. Kh. Baksht, A. G. Burachenko, M. V. Erofeev, and V. F. Tarasenko, Plasma Phys. Rep. 40, 404 (2014).

    Article  ADS  Google Scholar 

  28. A. V. Gurevich, G. M. Milikh, and R. Roussel-Dupre, Phys. Lett. A 165, 463 (1992).

    Article  ADS  Google Scholar 

  29. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Nauka, Moscow, 2001; IOP, Bristol, 2000).

  30. A. M. Boichenko, Tech. Phys. 44, 1247 (1999).

    Article  Google Scholar 

  31. A. M. Boichenko, Phys. Wave Phenom. 13, 104 (2005).

    Google Scholar 

  32. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997).

  33. P. A. Silberg, J. Geophys. Res. 67, 4941 (1962).

    Article  ADS  Google Scholar 

  34. P. A. Silberg, in Problems of Atmospheric and Space Electricity, Ed. by S. C. Coroniti (Elsevier, Amsterdam, 1965), p. 436.

    Google Scholar 

  35. J. R. Powell, D. Finkelstein, M. S. Zucker, and J. R. Manwaring, paper presented at American Physical Society 8th Annual Meeting, Division of Plasma Physics, Boston, MA, 1966.

  36. J. R. Powell and D. Finkelstein, Adv. Geophys. 13, 141 (1969).

    Article  ADS  Google Scholar 

  37. J. R. Powell and D. Finkelstein, Am. Scientist 58, 262 (1970).

  38. A. S. Zarin, A. A. Kuzovnikov, and V. M. Shibkov, Freely Localized Microwave Discharge in Air (Neft’ i Gaz, Moscow, 1996) [in Russian].

  39. G. D. Shabanov, Tech. Phys. Lett. 28, 164 (2002).

    Article  ADS  Google Scholar 

  40. A. I. Egorov, S. I. Stepanov, and G. D. Shabanov, Phys. Usp. 47, 99 (2004).

    Article  ADS  Google Scholar 

  41. G. D. Shabanov and B. Yu. Sokolovskii, Plasma Phys. Rep. 31, 512 (2005).

    Article  ADS  Google Scholar 

  42. A. I. Egorov and S. I. Stepanov, Tech. Phys. 47, 1584 (2002).

    Article  Google Scholar 

  43. L. V. Furov, Tech. Phys. 50, 380 (2005).

    Article  Google Scholar 

  44. M. Stenhoff, J. Meteorol. 29, 67 (2004).

    Google Scholar 

  45. A. M. Boichenko, J. Meteorol. 29, 73 (2004).

    Google Scholar 

  46. N. A. Ashurbekov, K. O. Iminov, and A. R. Ramazanov, J. Phys. Conf. Ser. 830, 012024 (2017).

    Article  Google Scholar 

Download references

FUNDING

The experimental part of this work was supported by the Russian Foundation for Basic Research, project no. 18-52-53003_GFEN_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beloplotov, D.V., Boichenko, A.M. & Tarasenko, V.F. Beaded Discharges Formed under Pulsed Breakdowns of Air and Nitrogen. Plasma Phys. Rep. 45, 387–396 (2019). https://doi.org/10.1134/S1063780X19030012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19030012

Navigation