Skip to main content
Log in

Mathematical Models of Plasma in Morozov’s Projects

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Mathematical models and simulations of plasma processes in scientific and technological projects proposed and, to a large extent, implemented by A.I. Morozov are reviewed. The plasmadynamic models are based on the magnetohydrodynamic (MHD) equations and their generalizations and deal with investigation of plasma flows in the channels–nozzles of the plasma thrusters. The calculations made an important contribution to the theory of an MHD analog of the de Laval nozzle and facilitated successful development and creation of a high-power quasi-stationary high-current plasma thruster. The plasmastatic models in terms of boundary-value problems with the Grad–Shafranov equation were realized in calculations of equilibrium magnetoplasma configurations in traps with current-carrying conductors embedded in plasma. Morozov also named these systems the Galatea traps. The results include calculations of the geometry, quantitative characteristics of the analyzed configurations, and a number of characteristic features in problems related to magnetic plasma confinement. General questions regarding mathematical models of interaction of reaction and diffusion processes are also discussed. The geometry of vacuum magnetic field forming magnetic surfaces for plasma confinement in traps is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. S. I. Braginskii, I. M. Gel’fand, and R. P. Fedorenko, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Izd. Akad. Nauk SSSR, Moscow, 1958; Pergamon, New York, 1960), Vol. 4.

  2. I. M. Gel’fand, M. I. Graev, N. M. Zueva, A. I. Morozov, and L. S. Solov’ev, Sov. Phys. Tech. Phys. 6, 852 (1962).

    Google Scholar 

  3. I. M. Gel’fand, M. I. Graev, N. M. Zueva, M. S. Mikhailova, and A. I. Morozov, Sov. Phys. Doklady 7, 223 (1962).

    ADS  Google Scholar 

  4. I. M. Gel’fand, M. I. Graev, N. M. Zueva, M. S. Mikhailova, and A. I. Morozov, Sov. Phys. Doklady 8, 188 (1963).

    ADS  Google Scholar 

  5. N. M. Zueva, M. S. Mikhailova, and A. I. Morozov, Sov. Phys. Doklady 8, 1185 (1964).

    ADS  Google Scholar 

  6. A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 2, p. 201.

    Google Scholar 

  7. N. M. Zueva and L. S. Solov’ev, Mat. Model. 10 (10), 88 (1998).

    Google Scholar 

  8. A. I. Morozov, in Proceedings of the International Seminar “International Cooperation in Future Space Missions Using Electric Propulsion Thrusters,” Svetlogorsk, 2005.

  9. A. I. Morozov, Sov. Phys. JETP 5, 215 (1957).

    Google Scholar 

  10. L. A. Artsimovich, S. Yu. Luk’yanov, I. M. Podgornyi, and S. A. Chuvatin, Sov. Phys. JETP 6, 1 (1958).

    ADS  Google Scholar 

  11. A. I. Morozov, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov: Introductional Volume (Nauka, Moscow, 2000), Part III, Sect. IX, p. 393 [in Russian].

  12. A. I. Morozov, Physical Principles of Space Electric Propulsion Thrusters (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  13. A. I. Morozov, Introduction to Plasma Dynamics (Fizmatlit, Moscow, 2006; CRC, Boca Raton, FL, 2012).

  14. A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 1.

    Google Scholar 

  15. K. V. Brushlinskii and A. I. Morozov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 105.

    Google Scholar 

  16. K. V. Brushlinskii, Mathematical and Computational Problems in Magnetic Gas Dynamics (BINOM, Moscow, 2009) [in Russian]

    Google Scholar 

  17. G. A. D’yakonov and V. B. Tikhonov, Plasma Phys. Rep. 20, 477 (1994).

    ADS  Google Scholar 

  18. K. V. Brushlinskii, N. S. Zhdanova, and E. V. Stepin, Comp. Math. Math. Phys. 58, 593 (2018).

    Article  Google Scholar 

  19. K. V. Brushlinskii, A. N. Kozlov, and V. S. Konovalov, Comp. Math. Math. Phys. 55, 1370 (2015).

    Article  Google Scholar 

  20. A. N. Kozlov and V. S. Konovalov, Commun. Nonlin. Sci. Num. Simulat. 51, 169 (2017).

    Article  Google Scholar 

  21. A. S. Arkhipov, V. Kim, and E. K. Sidorenko, Morozov’s Stationary Plasma Thrusters (MAI, Moscow, 2012) [in Russian].

  22. A. I. Morozov and V. V. Savelyev, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev and V. D. Shafranov (Consultant Bureau, New York, 2000), Vol. 21, p. 203.

    Google Scholar 

  23. A. I. Morozov, Plasma Phys. Rep. 29, 235 (2003).

    Article  ADS  Google Scholar 

  24. V. D. Shafranov, Sov. Phys. JETP 6, 545 (1958).

    ADS  MathSciNet  Google Scholar 

  25. H. Grad and H. Rubin, in Proceedings of the Second United Nations Conference on the Peaceful Uses of Atomic Energy, Geneva, 1958, p. 190.

  26. A. I. Morozov, Sov. J. Plasma Phys. 18, 159 (1992).

    Google Scholar 

  27. K. V. Brushlinskii, N. M. Zueva, M. S. Mikhailova, A. I. Morozov, V. D. Pustovitov, and N. B. Tuzova, Plasma Phys. Rep. 20, 257 (1994).

    ADS  Google Scholar 

  28. A. I. Morozov and V. V. Savel’ev, Phys. Usp. 41, 1049 (1998).

    Article  ADS  Google Scholar 

  29. K. V. Brushlinskii and I. A. Kondrat’ev, Mat. Mod. Comp. Simul. 11 (1), 121 (2019).

    Google Scholar 

  30. K. V. Brushlinskii and N. A. Chmykhova, Math. Mod. Comp. Simul. 3, 9 (2011).

    Article  Google Scholar 

  31. K. V. Brushlinskii and N. A. Chmykhova, Vest. NIYaU MIFI 3, 40 (2014).

    Google Scholar 

  32. V. I. Arnol’d, Russ. Math. Surv. 18 (6), 85 (1963).

    Article  Google Scholar 

  33. T. A. Ratnikova, Mat. Model. 9 (8), 3 (1997).

    MathSciNet  Google Scholar 

  34. E. Oran and J. P. Boris, Numerical Simulation of Reactive Flows (Elsevier, New York, 1987).

    MATH  Google Scholar 

  35. I. V. Belova, K. V. Brushlinskii, and A. I. Morozov, Mat. Model. 4 (10), 3 (1992).

    MathSciNet  Google Scholar 

  36. K. V. Brushlinskii and E. V. Styopin, J. Phys. Conf. Ser. 788, 012009 (2017).

    Article  Google Scholar 

  37. K. V. Brushlinskii and N. S. Zhdanova, Plasma Phys. Rep. 34, 1037 (2008).

    Article  ADS  Google Scholar 

  38. K. V. Brushlinskii and T. A. Ratnikova, Mat. Model. 8 (2), 75 (1996).

    Google Scholar 

  39. K. V. Brushlinskii and T. A. Ratnikova, Plasma Phys. Rep. 9, 743 (1995).

    ADS  Google Scholar 

  40. A. N. Tikhonov, A. A. Samarskii, L. A. Zaklyaz’minskii, P. P. Volosevich, L. M. Degtyarev, S. P. Kurdyumov, Yu. P. Popov, V. S. Sokolov, and A. P. Favorskii, Sov. Phys. Doklady 12, 331 (1967).

    ADS  Google Scholar 

  41. K. V. Brushlinskii, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov, Ser. B, Vol. VII-1: Mathematical Modeling in Low-Temperature Plasma, Ed. by Yu. P. Popov (Yanus-K, Moscow, 2008), Part 2, p. 84 [in Russian].

  42. A. N. Kozlov, Fluid Dyn. 35, 784 (2000).

    Article  Google Scholar 

  43. A. N. Kozlov, Plasma Phys. Controlled Fusion 59, 115004 (2017).

    Article  ADS  Google Scholar 

  44. K. V. Brushlinskii and N. S. Zhdanova, Fluid Dyn. 39, 474 (2004).

    Article  ADS  Google Scholar 

  45. K. V. Brushlinskii, Mathematical Foundations of Liquid, Gas, and Plasma Computational Mechanics (Intellekt, Dolgoprudnyi, 2017) [in Russian].

  46. E. V. Stepin, Vest. NIYaU MIFI 3, 517 (2014).

    Google Scholar 

  47. K. V. Brushlinskii and E. V. Styopin, J. Phys. Conf. Ser. 937, 012007 (2017).

    Article  Google Scholar 

  48. A. N. Kozlov, Plasma Phys. Rep. 38, 12 (2012).

    Article  ADS  Google Scholar 

  49. J. L. Johnson, C. R. Oberman, R. M. Kulsrud, and E. A. Frieman, Phys. Fluids 1, 281 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  50. V. D. Pustovitov and V. D. Shafranov, in Reviews of Plasma Physics, Ed. by B. B. Kadomtsev (Consultants Bureau, New York, 1990), Vol. 15, p. 163.

    Google Scholar 

  51. L. E. Zakharov and V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich and B. B. Kadomtsev (Consultants Bureau, New York, 1986), Vol. 11, p. 153.

    Google Scholar 

  52. A. I. Morozov and V. D. Pustovitov, Sov. J. Plasma Phys. 17, 740 (1991).

    Google Scholar 

  53. V. I. Ilgisonis and Yu. I. Pozdnyakov, Plasma Phys. Rep. 30, 988 (2004).

    Article  ADS  Google Scholar 

  54. V. Ya. Arsenin, Methods of Mathematical Physics and Special Functions (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  55. K. V. Brushlinskii, A. I. Morozov, and N. B. Petrovskaya, Mat. Model. 10 (11), 29 (1998).

    Google Scholar 

  56. K. V. Brushlinskii, N. M. Zueva, M. S. Mikhailova, and N. B. Petrovskaya, Mat. Model. 7 (4), 73 (1995).

    MathSciNet  Google Scholar 

  57. K. V. Brushlinskii and V. V. Savelyev, Mat. Model. 11 (5), 3 (1999).

    MathSciNet  Google Scholar 

  58. K. V. Brushlinskii, Comp. Phys. Commun. 26, 37 (2000).

    Article  ADS  Google Scholar 

  59. A. I. Morozov and A. G. Frank, Plasma Phys. Rep. 20, 879 (1994).

    ADS  Google Scholar 

  60. A. G. Frank, Phys. Usp. 53, 941 (2010).

    Article  ADS  Google Scholar 

  61. K. V. Brushlinskii and P. A. Ignatov, Comp. Math. Math. Phys. 50, 2071 (2010).

    Article  Google Scholar 

  62. K. V. Brushlinskii, A. S. Goldich, and A. S. Desyatova, Math. Mod. Comp. Simul. 5 (2), 156 (2013).

    Article  Google Scholar 

  63. K. V. Brushlinskii, A. S. Goldich, and N. A. Davydova, Math. Mod. Comp. Simul. 9 (1), 60 (2017).

    Article  Google Scholar 

  64. K. V. Brushlinskii and A. S. Goldich, Diff. Equat. 52, 845 (2016).

    Article  Google Scholar 

  65. K. V. Brushlinskii and A. S. Goldich, J. Phys. Conf. Ser. 788, 012008 (2017).

    Article  Google Scholar 

  66. K. V. Brushlinskii and I. A. Kondratyev, J. Phys. Conf. Ser. 937, 012006 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Brushlinskii.

Additional information

In Commemoration of Alexei Ivanovich Morozov’s 90th Birthday

Translated by I. Shumai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brushlinskii, K.V. Mathematical Models of Plasma in Morozov’s Projects. Plasma Phys. Rep. 45, 33–45 (2019). https://doi.org/10.1134/S1063780X19010021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19010021

Navigation