Skip to main content
Log in

Evolution of the Solar Wind Speed with Heliocentric Distance and Solar Cycle. Surprises from Ulysses and Unexpectedness from Observations of the Solar Corona

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

An extensive analysis of Ulysses observations of the solar wind speed V from 1990 to 2008 is undertaken. It is shown that the evolution of V with heliocentric distance r depends substantially on both the heliolatitude and the solar activity cycle. Deviations from the predicted Parker’s profile of V(r) are so considerable that cannot be explained by a scarcity of measurements or other technical effects. In particular, the expected smooth growth of the solar wind speed with r is typical only for the solar activity maximum and for low heliolatitudes (lower than ±40°), while at high latitudes, there are two V(r) branches: growing and falling. In the solar activity maximum, V increases toward the solar pole in the North hemisphere only; however, in the South hemisphere, it decreases with heliolatitude. In the minimum of solar activity, the profile of V(r) at low heliolatitudes has a local minimum between 2 and 5 AU. This result is confirmed by the corresponding data from other spacecraft (Voyager 1 and Pioneer 10). Unexpected spatial variations in V at low heliolatitudes can be explained by the impact of coronal hole flows on the V(r) profile since the flows incline to the ecliptic plane. To reproduce the impact of spatial variations of V in the polar corona on the behavior of V at low heliolatitudes, a stationary one-fluid ideal MHD-model is developed with account of recent results on imagery of the solar wind speed in the corona up to 5.5 solar radii obtained on the basis of combined observations from SOHO/UVCS, LASCO, and Mauna Loa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Parker, Astrophys. J. 128, 664 (1958).

    Article  ADS  Google Scholar 

  2. S. W. Y. Tam and T. Chang, Geophys. Res. Lett. 26, 3189 (1999).

    Article  ADS  Google Scholar 

  3. L. Adhikari, G. P. Zank, P. Hunana, D. Shiota, R. Bruno, Q. Hu, and D. Telloni, Astrophys. J. 841, 85 (2017).

    Article  ADS  Google Scholar 

  4. A. Bemporad, Astrophys. J. 846, 86 (2017).

    Article  ADS  Google Scholar 

  5. M. Tokumaru, H. Mori, T. Tanaka, T. Kondo, H. Takaba, and Y. Koyama, J. Geomagn. Geoelectr. 43, 619 (1991).

    Article  ADS  Google Scholar 

  6. J. M. Sokol, P. Swaczyna, M. Bzowski, and M. Tokumaru, Solar Phys. 290, 2589 (2015).

    Article  ADS  Google Scholar 

  7. D. J. McComas, S. J. Bame, and B. L. Barraclough, Geophys. Rev. Lett. 25, 1 (1998).

    Article  ADS  Google Scholar 

  8. D. J. McComas, H. A. Elliott, N. A. Schwadron, J. T. Gosling, R. M. Skoug, and B. E. Goldstein, Geophys. Rev. Lett. 30, 1517 (2003).

    Article  ADS  Google Scholar 

  9. O. V. Khabarova, Astron. Rep. 57, 844 (2013).

    Article  ADS  Google Scholar 

  10. G. Nisticò, G. Zimbardo, S. Patsourakos, V. Bothmer, and V. M. Nakariakov, Astron. Astrophys. 583, A127 (2015).

    Article  ADS  Google Scholar 

  11. A. J. Hundhausen, Coronal Expansion and Solar Wind (Physics and Chemistry in Space, Vol. 5) (Springer-Verlag, New York, 1972).

    Book  Google Scholar 

  12. S. L. McGregor, W. J. Hughes, C. N. Arge, D. Odstrcil, and N. A. Schwadron, J. Geophys. Res. 116, A03106 (2011).

    ADS  Google Scholar 

  13. E. W. Maunder, Mon. Not. R. Astron. Soc. 64, 747 (1904).

    Article  ADS  Google Scholar 

  14. R. Howard and P. A. Gilman, Astrophys. J. 307, 389 (1986).

    Article  ADS  Google Scholar 

  15. V. N. Obridko and B. D. Shelting, Astron. Rep. 47, 333 (2003).

    Article  ADS  Google Scholar 

  16. V. N. Obridko, D. D. Sokoloff, K. M. Kuzanyan, B. D. Shelting, and V. G. Zakharov, Mon. Not. R. Astron. Soc. 365, 827 (2006).

    Article  ADS  Google Scholar 

  17. O. Khabarova and V. Obridko, Astrophys. J. 761, 82 (2012).

    Article  ADS  Google Scholar 

  18. J. Zhang, J. Woch, and S. Solanki, Chinese J. Astron. Astrophys. 5, 531 (2005).

    Article  ADS  Google Scholar 

  19. J. D. Richardson, Ch. Wang, and K. I. Paularena, Adv. Space Res. 27, 471 (2001).

    Article  ADS  Google Scholar 

  20. R. A. Kislov, O. V. Khabarova, and H. V. Malova, J. Geophys. Res. 120, 8210 (2015).

    Article  Google Scholar 

  21. A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1980), Vol. 8, p. 1.

    Google Scholar 

  22. V. N. Obridko, E. V. Ivanov, A. Ozguc, A. Kilcik, and V. B. Yurchyshyn, Solar Phys. 281, 779 (2012).

    Article  ADS  Google Scholar 

  23. J. D. Nichols and S. W. H. Cowley, Ann. Geophys. 21, 1419 (2003).

    Article  ADS  Google Scholar 

  24. C. K. Goertz, D. E. Jones, B. A. Randall, E. J. Smith, and M. F. Thomsen, J. Geophys. Res. 81, 3393 (1976).

    Article  ADS  Google Scholar 

  25. R. A. Burger, T. P. J. Kruger, M. Hitge, and N. E. Engelbrecht, Astrophys. J. 674, 511 (2008).

    Article  ADS  Google Scholar 

  26. O. V. Khabarova, H. V. Malova, R. A. Kislov, L. M. Zelenyi, V. N. Obridko, A. F. Kharshiladze, M. Tokumaru, J. M. Sokol, S. Grzedzielski, and K. Fujiki, Astrophys. J. 836, 108 (2017).

    Article  ADS  Google Scholar 

  27. V. Obridko, V. Formichev, A. F. Kharshiladze, I. Zhitnik, V. Slemzin, D. Hathaway, and S. T. Wu, Astron. Astrophys. Trans. 18, 819 (2000).

    Article  ADS  Google Scholar 

  28. A. Wawrzaszek, M. Echim, W. M. Macek, and R. Bruno, Astrophys. J. Lett. 814, L19 (2015).

    Google Scholar 

  29. Yu. I. Ermolaev, N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Ermolaev, Kosm. Issl. 47, 1 (2009).

    Google Scholar 

  30. P. R. Gazis, A. Barnes, and J. D. Mihalov, Space Sci. Rev. 72, 117 (1995).

    Article  ADS  Google Scholar 

  31. J. D. Richardson, K. I. Paularena, A. J. Lazarus, and J. W. Belcher, Geophys. Rev. Lett. 22, 1469 (1995).

    Article  ADS  Google Scholar 

  32. D. G. Mitchell, E. C. Roelof, and J. H. Wolfe, J. Geophys. Res. 86, 165 (1981).

    Article  ADS  Google Scholar 

  33. L. F. Burlaga, Space Sci. Rev. 39, 255 (1984).

    Article  ADS  Google Scholar 

  34. D. Odstrcil, Adv. Space Res. 32, 497 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Khabarova.

Additional information

Original Russian Text © O.V. Khabarova, V.N. Obridko, R.A. Kislov, H.V. Malova, A. Bemporad, L.M. Zelenyi, V.D. Kuznetsov, A.F. Kharshiladze, 2018, published in Fizika Plazmy, 2018, Vol. 44, No. 9, pp. 752–766.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khabarova, O.V., Obridko, V.N., Kislov, R.A. et al. Evolution of the Solar Wind Speed with Heliocentric Distance and Solar Cycle. Surprises from Ulysses and Unexpectedness from Observations of the Solar Corona. Plasma Phys. Rep. 44, 840–853 (2018). https://doi.org/10.1134/S1063780X18090064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18090064

Navigation