Skip to main content
Log in

Ar + H2 Plasma Interacting with Lithium-Filled Capillary Porous Structure

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Ar + H2 plasma interacting with liquid lithium was carried out on a one-cathode linear plasma device (SCU-PSI). The lithium sample was covered with capillary porous structure (CPS). It is found that the electron temperature of applied plasma ranged from ~0–1 eV and electron density ranged from 0.1 × 1020 to 1 × 1020 m−3. The experimental results indicate that a reduction in the electron temperature and the lithium evaporation is found as the percentage of H2 increases When the ratio of argon and hydrogen keeps constant, the electron temperature and lithium evaporation increase with applied input power, respectively. The retention of hydrogen atoms in lithium surface results in reducing the lithium evaporation. The XRD analysis result shows that during plasma radiation no LiH is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Majeski, L. Berzak, T. Gray, R. Kaita, T. Kozub, F. Levinton, D. P. Lundberg, J. Manickam, G. V. Pereverzev, K. Snieckus, V. Soukhanovskii, J. Spaleta, D. Stotler, T. Strickler, J. Timberlake, et al., Nucl. Fusion 49, 055014 (2009).

    Article  ADS  Google Scholar 

  2. V. A. Evtikhin, I. E. Lyubliski, A. V. Vertkov, S. V. Mirnov, V. B. Lazarev, and N. P. Petrova, Plasma Phys. Controlled Fusion 44, 955 (2002).

    ADS  Google Scholar 

  3. D. N. Ruzic, W. Xu, D. Andruczyk, and M. A. Jaworski, Nucl. Fusion 51, 102002 (2011).

    Article  ADS  Google Scholar 

  4. R. Majeski, R. Doerner, T. Gray, R. Maing, D. Mansfield, J. Spaleta, V. Soukhanovskii, J. Timberlake, and L. Zakharov, Phys. Rev. Lett. 97, 075002 (2006).

    Article  ADS  Google Scholar 

  5. R. P. Doerner, S. I. Krasheninnikov, and K. Schmid, J. Appl. Phys. 95, 4471 (2004).

    Article  ADS  Google Scholar 

  6. P. S. Krstic, J. P. Allain, C. N. Taylor, J. Dadras, S, Maeda, K. Morokuma, J. Jakowski, A. Allouche, and C. H. Skinner, Phys. Rev. Lett. 10, 105001 (2013).

    Article  ADS  Google Scholar 

  7. J. N. Brook, A. Hassanein, T. Sizyuk, and J. P. Allain, Fusion Eng. Des. 87, 1737 (2012).

    Article  Google Scholar 

  8. M. G. Bell, H. Kugel, D. Mansfield, R. Kaita, S. Gerhardt, S. Paul, R. E. Bell, R. Maingi, and J. Canik, Plasma Phys. Controlled Fusion 51, 124054 (2009).

    Article  ADS  Google Scholar 

  9. M. A. Jaworski, T. Abrams, J. P. Allain, M. G. Bell, R. E. Bell, A. Diallo, T. K. Gray, S. P. Gerhardt, R. Kaita, H. W. Kugel, B. P. LeBlanc, R. Maingi, A. G. McLean, J. Menard, R. Nygren, et al., Nucl. Fusion 53, 102002 (2013).

    Article  Google Scholar 

  10. R. P. Doerner, M. J. Baldwin, R. W. Conn, A. A. Grossman, S. C. Luckharde, R. Seraydarian, G. R. Tynan, and D. G. Whyte, J. Nucl. Mater. 290, 166 (2001).

    Article  ADS  Google Scholar 

  11. M. J. Baldwin, R. P. Doerner, R. Causey, S. C. Luckhardt, and R. W. Conn, J. Nucl. Mater. 306, 15 (2002).

    Article  ADS  Google Scholar 

  12. T. Abrams, M. A. Jaworski, R. Kaita, D. P. Stotler, G. De Temmerman, T. W. Morgan, M. A. van den Berg, and H. J. van der Meiden, Fusion Eng. Des. 89, 2857 (2014).

    Article  Google Scholar 

  13. J. P. Allain, D. N. Ruzic, and M. R. Hendricks, J. Nucl. Mater. 290–293, 180 (2001).

    Article  Google Scholar 

  14. X. Cao, W. Ou, S. Tian, C. Wang, Z. Zhu, J. Wang, F. Gou, D. Yang, and S. Chen, Plasma Sci. Technol. 17, 20 (2015).

    Article  ADS  Google Scholar 

  15. X. Cao, W. Ou, S. Tian, C. Wang, Z. Zhu, J. Wang, F. Gou, D. Yang, and S. Chen, Fusion Eng. Des. 89, 2864 (2014).

    Article  Google Scholar 

  16. X. Cao, S. Chen, W. Zhang, X. Xue, M. Lu, C. Wang, J. Wang, F. Gou, D. Yang, and Ou Wei, Fusion Eng. Des. 89, 2919 (2014).

    Article  Google Scholar 

  17. J. P. Allain, D. N. Ruzic, and J. N. Brooks, Nucl. Fusion 44, 655 (2004).

    Article  ADS  Google Scholar 

  18. Y. Hirooka, H. Ohgaki, Y. Ohtsuka, and M. Nishikawa, J. Nucl. Mater. 337–339, 585 (2005).

    Article  Google Scholar 

  19. J. P. Allain, M. D. Coventry, and D. N. Ruzic, Phys. Rev. B 76, 5315 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Wang.

Additional information

Published in Russian in Fizika Plazmy, 2018, Vol. 44, No. 7, pp. 586–592.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Ma, X.C., Han, L. et al. Ar + H2 Plasma Interacting with Lithium-Filled Capillary Porous Structure. Plasma Phys. Rep. 44, 678–684 (2018). https://doi.org/10.1134/S1063780X18070085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18070085

Navigation