Skip to main content
Log in

Numerical Simulation of Whistler Waves in Magnetized Plasma with Small-Scale Irregularities

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Propagation of whistler-mode waves in magnetized plasma in the presence of small-scale field-aligned irregularities with enhanced or depressed plasma density is simulated numerically. The numerical experiments have demonstrated the effect of guided propagation of whistler-mode waves in plasma regions occupied by irregularities with transverse dimensions smaller than the whistler wavelength in uniform plasma. It is shown that not only individual irregularities but also the entire modified region, which serves as a specific guiding structure, exhibit waveguide properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. M. Walker, Rev. Geophys. 14, 629 (1976).

    Article  ADS  Google Scholar 

  2. V. S. Sonwalkar, in Geospace Electromagnetic Waves and Radiation, Ed. by J. W. LaBelle and R. A. Treumann (Springer, Berlin, 2006), p. 141.

    Book  Google Scholar 

  3. M. J. Laird and D. Nunn, Planet. Space Sci. 23, 1649 (1975).

    Article  ADS  Google Scholar 

  4. V. I. Karpman and R. N. Kuafman, Geomagn. Aeron. 23, 451 (1983).

    ADS  Google Scholar 

  5. V. I. Karpman and R. N. Kaufman, Geomagn. Aeron. 23, 791 (1983).

    ADS  Google Scholar 

  6. T. M. Zaboronkova, A. V. Kostrov, A. V. Kudrin, S. V. Tikhonov, A. V. Tronin, and A. A. Shaikin, Sov. Phys. JETP 75, 625 (1992).

    Google Scholar 

  7. A. V. Kostrov, A. V. Kudrin, and L. E. Kurina, G. A. Luchinin, A. A. Shaykin, and T. M. Zaboronkova, Phys. Scr. 62, 51 (2000).

    Article  ADS  Google Scholar 

  8. N. Nassiri-Mofakham, Europhys. Lett. 82, 35001 (2008).

    Article  ADS  Google Scholar 

  9. D. L. Pasmanik and V. Y. Trakhtengerts, Ann. Geophys. 23, 1433 (2005).

    Article  ADS  Google Scholar 

  10. V. A. Es’kin, T. M. Zaboronkova, and A. V. Kudrin, Radiophys. Quant. Electron. 51, 28 (2008).

    Article  ADS  Google Scholar 

  11. I. G. Kondrat’ev, A. V. Kudrin, and T. M. Zaboronkona, Electrodynamics of Density Ducts in Magnetized Plasmas (Gordon & Breach, Amsterdam, 1999).

    MATH  Google Scholar 

  12. P. V. Bakharev, T. M. Zaboronkova, A. V. Kudrin, and K. Krafft, Plasma Phys. Rep. 36, 919 (2010).

    Article  ADS  Google Scholar 

  13. V. A. Es’kin, T. M. Zaboronkova, A. V. Kudrin, and O. M. Ostafiichuk, Plasma Phys. Rep. 41, 231 (2015).

    Article  ADS  Google Scholar 

  14. T. M. Zaboronkova, A. V. Kudrin, and M. Yu. Lyakh, Radiophys. Quant. Electron. 46, 407 (2003).

    Article  ADS  Google Scholar 

  15. A. V. Kudrin, P. V. Bakharev, C. Krafft, and T. M. Zaboronkova, Phys. Plasmas 16, 063502 (2009).

    Article  ADS  Google Scholar 

  16. A. V. Kudrin, N. M. Shkokova, O. E. Ferencz, and T. M. Zaboronkova, Phys. Plasmas 21, 112115 (2014).

    Article  ADS  Google Scholar 

  17. I. G. Kondrat’ev, A. V. Kudrin, and T. M. Zaboronkova, Phys. Scr. 54, 96 (1996).

    Article  ADS  Google Scholar 

  18. R. L. Stenzel, Phys. Rev. Lett. 35, 574 (1975).

    Article  ADS  Google Scholar 

  19. J. E. Maggs, G. J. Morales, and W. Gekelman, Phys. Plasmas 4, 1881 (1997).

    Article  ADS  Google Scholar 

  20. A. V. Kostrov, A. I. Smirnov, M. V. Starodubtsev, and A. A. Shaikin, JETP Lett. 67, 579 (1998).

    Article  ADS  Google Scholar 

  21. J. P. Pfannmoller, C. Lechte, O. Grulke, and T. Klinger, Phys. Plasmas 19, 102113 (2012).

    Article  ADS  Google Scholar 

  22. H. J. Strangeways, J. Atmos. Terr. Phys. 44, 901 (1982).

    Article  ADS  Google Scholar 

  23. J. R. Woodroffe, A. V. Streltsov, A. Vartanyan, and G. M. Milikh, J. Geophys. Res.: Space Phys. 118, 7011 (2013).

    Article  ADS  Google Scholar 

  24. R. K. Fisher and R. W. Gould, Phys. Rev. Lett. 22, 1093 (1969).

    Article  ADS  Google Scholar 

  25. V. O. Rapoport, V. L. Frolov, S. V. Polyakov, G. P. Komrakov, N. A. Ryzhov, G. A. Markov, A. S. Belov, M. Parrot, and J.-L. Rauch, J. Geophys. Res.: Space Phys. 115, A10322 (2010).

    Article  ADS  Google Scholar 

  26. V. L. Frolov, V. O. Rapoport, E. A. Shorokhova, N. A. Aidakina, M. E. Gushchin, I. Yu. Zudin, S.V. Korobkov, A. V. Kostrov, M. Parro, and J.-L. Rauch, JETP Lett. 101, 313 (2015).

    Article  ADS  Google Scholar 

  27. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (Wiley-IEEE Press, Hoboken, NJ, 2000).

    Book  Google Scholar 

  28. V. A. Koldanov, S. V. Korobkov, M. E. Gushchin, and A. V. Kostrov, Plasma Phys. Rep. 37, 680 (2011).

    Article  ADS  Google Scholar 

  29. H. Alfvén and C.-G. Falthammer, Cosmical Electrodynamics (Clarendon, Oxford, 1963).

    MATH  Google Scholar 

  30. http://iri.gsfc.nasa.gov.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Zudin.

Additional information

Original Russian Text © I.Yu. Zudin, N.A. Aidakina, M.E. Gushchin, T.M. Zaboronkova, S.V. Korobkov, A.V. Kostrov, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 12, pp. 1018–1028.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zudin, I.Y., Aidakina, N.A., Gushchin, M.E. et al. Numerical Simulation of Whistler Waves in Magnetized Plasma with Small-Scale Irregularities. Plasma Phys. Rep. 43, 1179–1188 (2017). https://doi.org/10.1134/S1063780X17120078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17120078

Navigation