Skip to main content
Log in

Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, et al., J. Phys. D 45, 253001 (2012).

    Article  ADS  Google Scholar 

  2. R. Heintz, J. Appl. Phys. 39, 1741 (1968).

  3. K. Suzuki, S. Okudira, N. Sakudo, and I. Kanomata, Jpn. J. Appl. Phys. 16, 1979 (1977).

    Article  ADS  Google Scholar 

  4. L. Bardos, R. Dragila, G. Lonear, and J. Musil, Rozpr. Czeskoslov. Acad. VED 93, 86 (1983).

    Google Scholar 

  5. K. Ohkubo and K. Matsuda, Jpn. J. Appl. Phys. 17, 117 (1978).

    Article  ADS  Google Scholar 

  6. K. Suzuki, in Proceedings of the 8th International Symposium on Plasma Chemistry, Tokyo, 1987, p. 2399.

    Google Scholar 

  7. J. Musil, Vacuum 36, 161 (1986).

    Article  Google Scholar 

  8. Microwave Excited Plasmas, Ed. by M. Moisan and J. Pelletier (Elsevier, Amsterdam, 1992).

  9. J. E. Klemberg-Sapieha, O. M. Küttel, L. Martinu, and M. R. Wertheimer, Thin Solid Films 193-194, 965 (1990).

    Article  ADS  Google Scholar 

  10. P. Reinke, S. Bureau, J. E. Klemberg-Sapieha, and L. Martinu, J. Appl. Phys. 78, 4855 (1994).

    Article  ADS  Google Scholar 

  11. O. A. Ivanov, M. A. Lobaev, V. A. Isaev, and A. L. Vikharev, STAB 13, 022004 (2010).

  12. D. Tang and P. K. Chu, J. Appl. Phys. 93, 5883 (2003).

    Article  ADS  Google Scholar 

  13. S. P. Kuo, D. Bivolaru, S. Williams, and C. D. Carter, Plasma Sources Sci. Technol. 15, 266 (2006).

    Article  ADS  Google Scholar 

  14. Yu. A. Lebedev and E. V. Yusupova, Plasma Phys. Rep. 38, 620 (2012).

    Article  ADS  Google Scholar 

  15. Yu. A. Lebedev, I. L. Epshtein, and E. V. Yusupova, High Temp. 52, 150 (2014).

    Article  Google Scholar 

  16. Yu. A. Lebedev, M. V. Mokeev, P. V. Solomakhin, V. A. Shakhatov, A. V. Tatarinov, I. L. Epstein, J. Phys. D 41, 194001 (2008).

    Article  ADS  Google Scholar 

  17. Yu. A. Lebedev, A. V. Tatarinov, V. A. Shakhatov, and I. L. Epstein, J. Phys. Conf. Ser. 207, 012002 (2010).

    Article  Google Scholar 

  18. Encyclopedia of Low-Temperature Plasma, Vol. VIII-1: Chemistry of Low-Temperature Plasma, Ed. by Yu. A. Lebedev, N. A. Plate, and V. E. Fortov (Yanus-K, Moscow, 2005), p. 435 [in Russian].

  19. Yu. A. Lebedev, A. V. Tatarinov, A. Yu. Titov, I. L. Epstein, G. V. Krashevskaya, and E. V. Yusupova, J. Phys. D 47, 335203 (2014).

    Article  Google Scholar 

  20. Yu. A. Lebedev, A. V. Tatarinov, A. Yu. Titov, and I. L. Epshtein, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 156 (4), 120 (2014).

    MathSciNet  Google Scholar 

  21. M. Capitelli, C. M. Ferreira, B. F. Gordiets, and A. I. Osipov, Plasma Kinetics in Atmospheric Gases (Springer-Verlag, Berlin, 2000).

    Book  Google Scholar 

  22. B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  23. H. Koschmider, V. Raible, and H. Kleipoppen, Phys. Rev. A 8, 1365 (1973).

    Article  ADS  Google Scholar 

  24. A. H. Mahan, A. Gallaher, and S. J. Smith, Phys. Rev. A 13, 156 (1976).

    Article  ADS  Google Scholar 

  25. Yu. A. Lebedev and I. L. Epshtein, J. Moscow Phys. Soc. 5, 103 (1995).

    Google Scholar 

  26. H. Tawara, Y. Itikawa, H. Nishimura, and M. Yoshino, J. Phys. Chem. Ref. Data 19, 617 (1990).

    Article  ADS  Google Scholar 

  27. C. Slocomb, W. Miller, and H. Shaefer, J. Chem. Phys. 55, 926 (1971).

    Article  ADS  Google Scholar 

  28. A. Rousseau, A. Granier, G. Gousset, and P. Leprince, J. Phys. D 27, 1412 (1994).

    Article  ADS  Google Scholar 

  29. M. Cassiatore, M. Capitelli, and C. Gorse, J. Phys. D 13, 575 (1980).

    Article  ADS  Google Scholar 

  30. D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).

    Article  ADS  Google Scholar 

  31. M. Cacciatore, M. Capitelli, and M. Dilonardo, Chem. Phys. 34, 193 (1978).

    Article  ADS  Google Scholar 

  32. W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities (National Bureau of Standards, New York, 1966).

    Book  Google Scholar 

  33. M. T. Bowers, D. D. Eleman, and J. King, J. Chem. Phys. 50, 4787 (1969).

    Article  ADS  Google Scholar 

  34. C. Gorse, M. Capitelli, M. Bacal, J. Bretagne, and A. Lagana, Chem. Phys. 117, 177 (1987).

    Article  ADS  Google Scholar 

  35. P. Kae-Nune, J. Perrin, J. Jolly, and J. Guillon, Surf. Sci. 360, L495 (1996).

    Article  ADS  Google Scholar 

  36. http://www.comsol.com.

  37. Yu. A. Lebedev and M. V. Mokeev, Plasma Phys. Rep. 29, 226 (2003).

    Article  ADS  Google Scholar 

  38. Yu. A. Lebedev and M. V. Mokeev, Plasma Phys. Rep. 27, 418 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Lebedev.

Additional information

Original Russian Text © Yu.A. Lebedev, G.V. Krashevskaya, A.V. Tatarinov, A.Yu. Titov, I.L. Epshtein, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 1, pp. 79–87.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, Y.A., Krashevskaya, G.V., Tatarinov, A.V. et al. Effect of a DC external electric field on the properties of a nonuniform microwave discharge in hydrogen at reduced pressures. Plasma Phys. Rep. 43, 99–107 (2017). https://doi.org/10.1134/S1063780X1701007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1701007X

Navigation