Skip to main content
Log in

On the resonance amplification of magnetic perturbations near the threshold of tearing instability in a tokamak

  • Tokamaks
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Using a cylindrical model, a relatively simple description is presented of how a magnetic field perturbation stimulated by a low external helical current or a small helical distortion of the boundary and generating magnetic islands penetrates into a plasma column with a magnetic surface q=m/n to which tearing instability is attached. Linear analysis of the classical instability with an aperiodic growth of the perturbation in time shows that the perturbation amplitude in plasma increases in a resonant manner as the discharge parameters approach the threshold of tearing instability. In a stationary case, under the assumption on the helical character of equilibrium, which can be found from the two-dimensional nonlinear equation for the helical flux, there is no requirement for the small size of the island. Examples of calculations in which magnetic islands are large near the threshold of tearing instability are presented. The bifurcation of equilibrium near the threshold of tearing instability in plasma with a cylindrical boundary, i.e., the existence of helical equilibrium (along with cylindrical equilibrium) with large islands, is described. Moreover, helical equilibrium can also exist in the absence of instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).

    Article  ADS  Google Scholar 

  2. J. L. Johnson, J. M. Greene, and B. Coppi, Phys. Fluids 6, 1169 (1963).

    Article  ADS  Google Scholar 

  3. Nucl. Fusion 47 (6) (2007).

  4. A. H. Reiman, Phys. Fluids B 3, 2617 (1991).

    Article  ADS  Google Scholar 

  5. R. M. Kulsrud and T. S. Hahm, Phys. Scr. T2/2, 525 (1982).

    Article  ADS  Google Scholar 

  6. T. S. Hahm and R. M. Kulsrud, Phys. Fluids 28, 2412 (1985).

    Article  ADS  MATH  Google Scholar 

  7. G. E. Vekstein and R. Jain, Phys. Plasmas 5, 1506 (1998).

    Article  ADS  Google Scholar 

  8. R. Fitzpatrick and T. C. Hender, Phys. Fluids B 3, 644 (1991).

    Article  ADS  Google Scholar 

  9. T. H. Jensen, A. W. Leonard, and A. W. Hyatt, Phys. Fluids B 5, 1239 (1993).

    Article  ADS  Google Scholar 

  10. A. I. Smolyakov, A. Hirose, E. Lizzaro, G. B. Re, and J. D. Callen, Phys. Plasmas 2, 1581 (1995).

    Article  ADS  Google Scholar 

  11. W. Huang and P. Zhu, Phys. Plasmas 22, 032502 (2015).

    Article  ADS  Google Scholar 

  12. P. H. Rutherford, Phys. Fluids 16, 1903 (1973).

    Article  ADS  Google Scholar 

  13. R. B. White, D. A. Monticello, M. N. Rosenbluth, and B. V. Waddell, Phys. Fluids 20, 800 (1977).

    Article  ADS  Google Scholar 

  14. B. Carreras, B. V. Waddell, and H. R. Hicks, Nucl. Fusion 19, 1423 (1979).

    Article  ADS  Google Scholar 

  15. L. E. Zakharov, in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto, 1986, Nucl. Fusion Suppl. 2, 75 (1987).

    Google Scholar 

  16. V. D. Shafranov. Sov. Phys. Tech. Phys. 15, 175 (1970).

  17. J. L. Johnson, C. R. Oberman, R. M. Kulsrud, and E. A. Frieman, Phys. Fluids 1, 281 (1958).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. L. E. Zakharov and V. D. Shafranov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich and B. B. Kadomtsev (Consultants Bureau, New York, 1986), Vol. 11, p. 153.

  19. B. B. Kadomtsev and O. P. Pogutse, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1970), Vol. 5, p. 249.

  20. V. V. Arsenin, Sov. J. Plasma Phys. 3, 524 (1977).

    ADS  Google Scholar 

  21. A. A. Skovoroda and E. A. Sorokina, in Proceedings of the 25th Nuclear Fusion Conference, St. Petersburg, 2014, Paper TH/P5-36.

    Google Scholar 

  22. D. P. Brennan, E. J. Strait, A. D. Turnbull, M. S. Chu, R. J. La Haye, T. C. Luce, T. S. Taylor, S. Kruger, and A. Pletzer, Phys. Plasmas 9, 2998 (2002).

    Article  ADS  Google Scholar 

  23. A. H. Boozer, Phys. Rev. Lett. 86, 5059 (2001).

    Article  ADS  Google Scholar 

  24. V. D. Pustovitov, Plasma Phys. Rep. 30, 187 (2004).

    Article  ADS  Google Scholar 

  25. W. A. Cooper, J. P. Graves, A. Pochelon, O. Sauter, and L. Villard, Phys. Rev. Lett. 105, 035003 (2010).

    Article  ADS  Google Scholar 

  26. B.B. Kadomtsev and O.P. Pogutse, Sov. Phys. JETP 38, 283 (1973).

    ADS  Google Scholar 

  27. M. N. Rosenbluth, L. A. Monticello, H. R. Strauss, and R. B. White, Phys. Fluids 19, 1987 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Arsenin.

Additional information

Original Russian Text © V.V. Arsenin, A.A. Skovoroda, 2015, published in Fizika Plazmy, 2015, Vol. 41, No. 12, pp. 1039–1053.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsenin, V.V., Skovoroda, A.A. On the resonance amplification of magnetic perturbations near the threshold of tearing instability in a tokamak. Plasma Phys. Rep. 41, 961–974 (2015). https://doi.org/10.1134/S1063780X15120028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X15120028

Keywords

Navigation