Skip to main content
Log in

On the relation between the index of the interelectrode gap filling with spark channels and the current of a pulsed multichannel sliding discharge in Ne, Ar, and Xe

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Experimental results and model concepts concerning the relation between the index K of the interelectrode gap filling with spark channels and the peak current I peak of a single-pulse submicrosecond multichannel complete sliding discharge on an alumina ceramic surface are discussed. The spatial structure of an incomplete discharge at the threshold for the surface spark breakdown of gas is considered. The experiments were performed with three gases, Ne, Ar, and Xe, at pressures of 30 and 100 kPa and opposite polarities of the discharge voltage, with two discharge chambers differing in the geometry of the discharge gap and the thickness of the ceramic plate. It is shown that, although the structure of the incomplete discharge at the threshold for spark breakdown varies from diffuse homogeneous to pronounced filamentary, the dependence \(K\left( {\sqrt[6]{{I_{peak} }}} \right)\) for a complete discharge is close to linear and can be qualitatively explained by the earlier proposed semiempirical model of the time evolution of the structure of a multichannel discharge. In particular, the estimated steepness of the dependence \(K\left( {\sqrt[6]{{I_{peak} }}} \right)\) agrees best with the experimental results when the local density of free electrons at the threshold for spark breakdown is 1016 cm−3 or higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Trusov and K. K. Trusov, Quant. Electron. 18, 861 (1988).

    ADS  Google Scholar 

  2. K. K. Trusov, Appl. Opt. 33, 949 (1994).

    Article  ADS  Google Scholar 

  3. I. G. Katayev, Electromagnetic Shock Waves (Sov. Radio, Moscow, 1963; Iliffe, London, 1966).

    Google Scholar 

  4. I. K. Krasyuk, N. I. Lipatov, and P. P. Pashinin, Quant. Electron. 6, 1298 (1976).

    ADS  Google Scholar 

  5. V. M. Borisov, F. I. Vysika’ilo, and O. B. Khristoforov, Teplofiz. Vys. Temp. 21, 844 (1983).

    Google Scholar 

  6. P. N. Dashuk, L. L. Tchelnokov, and M. D. Yarysheva, Elektron. Tekh., No. 6, 4 (1975).

    Google Scholar 

  7. V. Yu. Baranov, V. M. Borisov, F. I. Vysika’ilo, and O. B. Khristoforov, Preprint no. 3472/7 (Kurchatov Inst., Moscow, 1981).

  8. V. Yu. Baranov, V. M. Borisov, F. I. Vysika’ilo, and O. B. Khristoforov, Teplofiz. Vys. Temp. 22, 661 (1984).

    Google Scholar 

  9. V. M. Borisov and O. B. Khristoforov, in Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov: Introductional Volume (Nauka, Moscow, 2000), Part 2, p. 350 [in Russian].

  10. K. K. Trusov, J. Phys. D 39, 335 (2006).

    Article  ADS  Google Scholar 

  11. J. C. Martin, Multichannel Gaps (Aldermaston, Berks, 1970).

    Google Scholar 

  12. P. N. Dashuk, Patent USA No. 4092559, published May 30, 1978.

  13. A. V. Grigorjev, P. N. Dashuk, S. N. Markov, V. L. Shutov, and M. D. Yarysheva, Prib. Tekh. Eksp., No. 8, 151 (1976).

    Google Scholar 

  14. W. I. Sarjeant, IEEE Trans. Plasma Sci. 8, 216 (1980).

    Article  ADS  Google Scholar 

  15. A. I. Gerasimov, Instrum. Exp. Tech. 47, 1 (2004).

    Article  Google Scholar 

  16. K. K. Trusov, High Temp. 45, 601 (2007).

    Article  Google Scholar 

  17. K. Allegraud, O. Guaitella, and A. Rousseau, J. Phys. D 40, 7698 (2007).

    Article  ADS  Google Scholar 

  18. K. K. Trusov, Plasma Phys. Rep. 36, 170 (2010).

    Article  ADS  Google Scholar 

  19. U. Ebert, W. van Saarloos, and C. Caroli, Phys. Rev. E 55, 1530 (1997).

    Article  ADS  Google Scholar 

  20. K. K. Trusov, Plasma Phys. Rep. 38, 382 (2012).

    Article  ADS  Google Scholar 

  21. V. M. Borisov, F. I. Vysika’ilo, Yu. B. Kiryukhin, and O. B. Khristoforov, Quant. Electron. 13, 1408 (1983).

    ADS  Google Scholar 

  22. S. I. Andreev, I. M. Belousova, P. N. Dashuk, D. Yu. Zaroslov, E. A. Zobov, N. V. Karlov, G. P. Kuzmin, S. M. Nikiforov, A. M. Prokhorov, A. N. Sidorov, L. L. Chelnokov, and M. D. Yarysheva, JETP Lett. 21, 194 (1975).

    ADS  Google Scholar 

  23. S. I. Andreev, E. A. Zobov, and A. N. Sidorov, Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 38 (1978).

    Google Scholar 

  24. R. E. Beverly, J. Appl. Phys. 60, 104 (1986).

    Article  ADS  Google Scholar 

  25. V. I. Gibalov and G. J. Pietsch, Plasma Sources Sci. Technol. 21, 024010 (2012).

    Article  ADS  Google Scholar 

  26. P. Stritzke, I. Sander, and H. Raether, J. Phys. D 10, 2285 (1977).

    Article  ADS  Google Scholar 

  27. S. V. Pancheshnyi, M. M. Nudnova, and A. Yu. Starikovskii, Phys. Rev. E 71, 016407 (2005).

    Article  ADS  Google Scholar 

  28. M. M. Nudnova and A. Yu. Starikovskii, J. Phys. D 41, 234003 (2008).

    Article  ADS  Google Scholar 

  29. A. Luque, V. Ratushnaya, and U. Ebert, J. Phys. D 41, 234005 (2008).

    Article  ADS  Google Scholar 

  30. P. A. Vitello, B. M. Penetrante, and J. N. Bardsley, Phys. Rev. E 49, 5574 (1994).

    Article  ADS  Google Scholar 

  31. N. Yu. Babaeva and G. V. Naidis, J. Phys. D 29, 2423 (1996).

    Article  ADS  Google Scholar 

  32. A. A. Kulikovsky, J. Phys. D 33 (2000).

  33. S. V. Pancheshnyi, S. M. Starikovskaya, and A. Yu. Starikovskii, J. Phys. D 34, 105 (2001).

    Article  ADS  Google Scholar 

  34. S. V. Pancheshnyi and A. Yu. Starikovskii, J. Phys. D 36, 2683 (2003).

    Article  ADS  Google Scholar 

  35. D. Bessieres, J. Pailloi, A. Bourdon, P. Segur, and E. Marode, J. Phys. D 40, 6559 (2007).

    Article  ADS  Google Scholar 

  36. M. V. Kozlov, M. V. Sokolova, A. G. Temnikov, V. V. Timatkov, and I. P. Vereshchagin, Plasmas Polymers 8, 179 (2003).

    Article  Google Scholar 

  37. V. R. Soloviev and V. M. Krivtsov, J. Phys. D 42, 125208 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Trusov.

Additional information

Original Russian Text © K.K. Trusov, 2014, published in Fizika Plazmy, 2014, Vol. 40, No. 9, pp. 842–856.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trusov, K.K. On the relation between the index of the interelectrode gap filling with spark channels and the current of a pulsed multichannel sliding discharge in Ne, Ar, and Xe. Plasma Phys. Rep. 40, 739–753 (2014). https://doi.org/10.1134/S1063780X1408008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1408008X

Keywords

Navigation