Skip to main content
Log in

Theoretical Analysis of Pion–Nucleus Scattering at Energies of the (3,3) Pion–Nucleon Resonance

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We present the results of calculations of the π-meson elastic and inelastic scattering cross sections on 28Si, 40Ca, 58Ni, 208Pb nuclei in the range of (3,3) pion–nucleon resonance at energies from 130 to 290 MeV obtained in the framework of the folding optical potential model, in which the parameters of the elementary amplitude of pion scattering on bound nucleons are determined by comparison with experimental data. Then these parameters are compared with those known from the pion scattering on free nucleons, and thus the influence of the nuclear medium on the \(\pi N\) scattering amplitude is established. Also, the elastic scattering cross sections have been calculated within the modified Kisslinger potential model constructed on the basic principles of pion–nucleon interaction in nuclear matter. The region of applicability of both approaches is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

Notes

  1. In formula (6) and before it, the system of units with MeV and fm was used, yielding \(\hbar c\) = 197.327 MeV fm. In what follows, we will use the natural system, where \(\hbar = c = 1\) and \(E,T,k,m\) have the same dimensions [MeV].

  2. Parameters \(\sigma ,\alpha ,\beta \) used below are given by expressions (7), and the function\(~{{f}_{{\pi N}}}~\)defines the q dependence of \(\pi N\)-scattering amplitude (4).

REFERENCES

  1. L. S. Kisslinger, “Scattering of mesons by light nuclei,” Phys. Rev. 98, 761 (1955).

    Article  ADS  MATH  Google Scholar 

  2. M. Krell and T. E. O. Ericson, “Energy levels and wave functions of pionic atoms,” Nucl. Phys. B 11, 521 (1969).

    Article  ADS  Google Scholar 

  3. G. E. Brown and W. Weise, “Pion scattering and isobars in nuclei,” Phys. Rep. 22, 279 (1975).

    Article  ADS  Google Scholar 

  4. A. B. Migdal, “Pion fields in nuclear matter,” Rev. Mod. Phys. 50, 107 (1978).

    Article  ADS  Google Scholar 

  5. A. B. Migdal, E. E. Saperstein, M. A. Troitsky, and D. N. Voskresensky, “Pion degrees of freedom in nuclear matter,” Phys. Rep. 192, 179 (1990).

    Article  ADS  Google Scholar 

  6. D. N. Voskresensky, “S-wave pion condensation in symmetric nuclear matter,” Phys. Rev. D 105, 116007 (2022).

    Article  ADS  Google Scholar 

  7. R. J. Glauber, Lectures in Theoretical Physics, Ed. by W. E. Brittin (Interscience, New York, 1959).

    Google Scholar 

  8. G. Faldt and T. E. O. Ericson, “Fermi motion in pion deuteron scattering at high energies,” Nucl. Phys. B 8, 1 (1968).

    Article  ADS  Google Scholar 

  9. R. Bjornenak, J. Finjord, P. Osland, and A. Reitan, “Elastic and single-charge-exchange scattering of pions by carbon nuclei,” Nucl. Phys. B 22, 179 (1970).

    Article  ADS  Google Scholar 

  10. L. A. Charlton and J. M. Eisenberg, “Multiple-scattering theory for pion-nucleus scattering near the 3,3 resonance,” Ann. Phys. (New York) 63, 286 (1971).

    Article  ADS  Google Scholar 

  11. R. H. Landau, S. C. Phatak, and F. Tabakin, “Improved theoretical pion-nucleus optical potentials,” Ann. Phys. (New York) 78, 299 (1973).

    Article  ADS  Google Scholar 

  12. G. A. Miller, “Nuclear polarizability corrections to pion elastic scattering,” Nucl. Phys. A 223, 477 (1974).

    Article  ADS  Google Scholar 

  13. L. S. Liu and C. M. Shakin, “Pion-nucleus elastic scattering: Theory and applications,” Prog. Part. Nucl. Phys. 5, 207 (1981).

    Article  ADS  Google Scholar 

  14. S. A. E. Khallaf and A. A. Ebrahim, “Analysis of π±-nucleus elastic scattering using a local potential,” Phys. Rev. C 62, 024603 (2000); “Elastic and inelastic scattering of pions from nuclei using an equivalent local potential,” Phys. Rev. C 65, 064605 (2002).

    Article  ADS  Google Scholar 

  15. G. R. Satchler, “Local potential model for pion-nucleus scattering and π+π excitation ratios,” Nucl. Phys. A 540, 533 (1992).

    Article  ADS  Google Scholar 

  16. M. Gmitro, S. S. Kamalov, and R. Mach, “Momentum-space second-order optical potential for pion-nucleus elastic scattering,” Phys. Rev. C 36, 1105 (1987).

    Article  ADS  Google Scholar 

  17. V. K. Lukyanov, E. V. Zemlyanaya, and K. V. Lukyanov, “Nucleus-nucleus scattering in the high-energy approximation and optical folding potential,” Phys. Atom. Nucl. 69, 240 (2006).

    Article  ADS  Google Scholar 

  18. M. B. Johnson and G. R. Satchler, “Characteristics of local pion–nucleus potentials that are equivalent to Kisslinger-type potentials,” Ann. Phys. (New York) 248, 134 (1996).

    Article  ADS  Google Scholar 

  19. A. G. Sitenko, “On the theory of nuclear reactions involving composite particles,” Ukr. Fiz. Zh. 4, 152 (1959);

    Google Scholar 

  20. Ukr. J. Phys. 53, 142—147 (2008).

  21. W. Czyz and L. C. Maximon, “High energy, small angle elastic scattering of strongly interacting composite particles,” Ann. Phys. (New York) 52, 59 (1969).

    Article  ADS  Google Scholar 

  22. Yu. N. Eldyshev, V. K. Luk’yanov, and Yu. S. Pol’, “Analysis of elastic electron scattering by light nuclei based on the symmetrized Fermi density,” Sov. J. Nucl. Phys. 16, 282 (1972).

    Google Scholar 

  23. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, and K. Hanna, “Microscopic -nucleus optical potential and calculations of differential elastic-scattering cross sections and total reaction cross sections,” Phys. Atom. Nucl. 73, 1443 (2010).

    Article  ADS  Google Scholar 

  24. P. D. Kunz and E. Rost, “The distorted-wave Born approximation,” in Computational Nuclear Physics 2, Ed. By K. Langanke, J. A. Maruhn, and S. E. Koonin (Springer, New York, 1993).

  25. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, A. E. Lithi, I. Abdulmagead, and B. Slowinski, “Analysis of elastic scattering of pi-mesons by nuclei within the microscopic optical potential,” Bull. Rus. Acad. Sci.: Phys. 77, 427 (2013).

    Google Scholar 

  26. D. F. Geesaman, C. Olmer, B. Zeidman, R. L. Boudrie, G. S. Blanpied, M. J. Devereux, G. R. Burleson, R. E. Segel, L. W. Swenson, and H. A. Thiessen, “Elastic and inelastic scattering of 291-MeV pions by 9Be, 28Si, 58Ni, and 208Pb,” Phys. Rev. C 23, 2635 (1981).

    Article  ADS  Google Scholar 

  27. V. K. Lukyanov, E. V. Zemlyanaya, and B. Slowinski, “Total cross sections for nucleus-nucleus reactions within the Glauber–Sitenko approach for realistic distributions of nuclear matter,” Phys. Atom. Nucl. 67, 1282 (2004).

    Article  ADS  Google Scholar 

  28. M. El-Azab Farid and G. R. Satchler, “A density-dependent interaction in the folding model for heavy-ion potentials,” Nucl. Phys. A 438, 525 (1985).

    Article  ADS  Google Scholar 

  29. J. D. Patterson and R. J. Peterson, “Empirical distributions of protons within nuclei,” Nucl. Phys. A 717, 235 (2003).

    Article  ADS  Google Scholar 

  30. H. Lesnyak and L. Lesnyak, “Coulomb-nuclear interference in the multiple collision model,” Nucl. Phys. B 38, 221 (1972).

    Article  ADS  Google Scholar 

  31. M. P. Locher, O. Steinmann, and O. Straumann, “Why is the 33-resonance shifted in nuclei?,” Nucl. Phys. B 27, 598 (1971).

    Article  ADS  Google Scholar 

  32. N. Bano and I. Ahmad, “Medium-energy pion scattering and the alpha-cluster description of 12C,” J. Phys. G 5, 39 (1979).

    Article  ADS  Google Scholar 

  33. G. E. Brown, C. B. Dover, P. B. Siegel, and W. Weise, “K + -nucleus scattering and the "swelling” of nucleons in nuclei,” Phys. Rev. Lett. 60, 2723 (1988).

    Article  ADS  Google Scholar 

  34. E. Oset, Y. Toki, and W. Weise, “Pionic modes of excitation in nuclei,” Phys. Rep. 83, 281 (1982).

    Article  ADS  Google Scholar 

  35. C. A. Bertulani and C. De Conti, “Pauli blocking and medium effects in nucleon knockout reactions,” Phys. Rev. C 81, 064603 (2010).

    Article  ADS  Google Scholar 

  36. M. Mizoguchi and H. Toki, “Modification of pion–nucleon and kaon-nucleon scattering amplitudes in 12C at k = 0.8 GeV/c,” Nucl. Phys. A 513, 685 (1990).

    Article  ADS  Google Scholar 

  37. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, E. I. Zhabitskaya, and M. V. Zhabitsky, “Modeling of a microscopic optical pion–nucleon potential at energies in the (3,3)-resonance region and nuclear-matter effect on the pion–nucleon amplitude,” Phys. At. Nucl 77, 100 (2014).

    Article  Google Scholar 

  38. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, and I. Abdul-Magead, “Analysis of the pion-nucleus scattering within the folding and the Kisslinger type potentials,” Nucl. Phys. A 1010, 122190 (2021).

    Article  Google Scholar 

  39. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, and I. A. M. Abdul-Magead, “Comparative analysis of the pion-nucleus scattering within the microscopic folding and the local Kisslinger type potentials,” EPJ Web Conf. 138, 01019 (2017).

  40. H. De Vries, C. W. De Jager, and C. De Vries, “Nuclear charge-density-distribution parameters from elastic electron scattering,” At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  41. B. M. Preedom, R. Corfu, J.-P. Egger, P. Gretillat, C. Lunke, J. Piffaretti, E. Schwarz, J. Jansen, and C. Perrin, “A systematic study of π+ and π inelastic scattering from 28Si in the region of the πN (3,3) resonance,” Nucl. Phys. A 326, 385 (1979).

    Article  ADS  Google Scholar 

  42. C. Olmer, D. F. Geesaman, B. Zeidman, S. Chakravarti, T.-S. H. Lee, R. L. Boudrie, R. H. Siemssen, J. F. Amann, C. L. Morris, H. A. Thiessen, G. R. Burleson, M. J. Devereux, R. E. Segel, and L. W. Swenson, “Elastic and inelastic scattering of 162 MeV pions by 28Si, 58Ni, and 208Pb,” Phys. Rev. C 21, 254 (1980).

    Article  ADS  Google Scholar 

  43. P. Gretillat, J.-P. Egger, J.-F. Germond, C. Lunke, E. Schwarz, C. Perrin, and B. M. Freedom, “Study of π+ and π elastic scattering from 40Ca and 48Ca in the region of the πN (3,3) resonance,” Nucl. Phys. A 364, 270 (1981).

    Article  ADS  Google Scholar 

  44. D. T. Khoa and G. R. Satchler, “Generalized folding model for elastic and inelastic nucleus–nucleus scattering using realistic density dependent nucleon–nucleon interaction,” Nucl. Phys. A 668, 3 (2000).

    Article  ADS  Google Scholar 

  45. E. V. Zemlyanaya, V. K. Lukyanov, K. V. Lukyanov, I. A. M. Abdul-Magead, E. I. Zhabitskaya, and M. V. Zhabitsky, “Microscopic analysis of Elastic and Inelastic Pion-Nucleus Scattering at Energies of (3 3) Resonance,” In Nuclear Theory Ed. by M. Gaidarov and N. Minkov (Heron Press, Sofia, 2016), Vol. 35, p. 103.

    Google Scholar 

  46. K. V. Lukyanov, V. K. Lukyanov, E. V. Zemlyanaya, and I. Abdulmagead, “Pion-nucleus elastic scattering studies within the microscopic folding potential,” J. Phys. Conf. Ser. 1555, 012018 (2020).

    Article  Google Scholar 

  47. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, A. El-Lithi, and I. Abdulmagead, “Analysis of inelastic scattering of π-mesons from nuclei within the microscopic optical potential,” Bull. Rus. Acad. Sci. Phys. 78, 421 (2014).

    Article  Google Scholar 

  48. G. R. Satchler, Direct Nuclear Reactions (Clarendon Press, Oxford, 1983).

    Google Scholar 

  49. A. A. Carter, J. R. Williams, D. V. Bugg, P. J. Bussey, and D. R. Dance, “The total cross sections for pion-proton scattering between 70 MeV and 290 MeV,” Nucl. Phys. B 26, 445 (1971).

    Article  ADS  Google Scholar 

  50. R. A. Arndt, J. M. Ford, and L. D. Roper, “Pion–nucleon partial-wave analysis to 1100 MeV,” Phys. Rev. D 32, 1085 (1985).

    Article  ADS  Google Scholar 

  51. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, A. Y. Ellithi, and I. A. M. Abdul-Magead, “Study of elastic and inelastic pion-nucleus scattering using the microscopic model of optical potential,” Int. J. Mod. Phys. E 24, 1550035 (2015).

    Article  ADS  Google Scholar 

  52. V. K. Lukyanov, E. V. Zemlyanaya, K. V. Lukyanov, and I. A. M. Abdul-Magead, “Application of a folding-model optical potential to analyzing inelastic pion–nucleus scattering and the in-medium effect on the pion–nucleon amplitude,” Phys. At. Nucl. 79, 978 (2016).

    Article  Google Scholar 

  53. V. K. Lukyanov and A. I. Titov, “Excitation of nuclei by near-barrier-energy particles,” Sov. J. Nucl. Phys. 18, 157 (1974).

    Google Scholar 

  54. V. K. Lukyanov, K. V. Lukyanov, E. V. Zemlyanaya, A. N. Antonov, and M. K. Gaidarov, “Calculations of 6He+p elastic scattering cross sections using folding approach and high-energy approximation for the optical potential,” Eur. Phys. J. A 33, 389 (2007).

    Article  ADS  Google Scholar 

  55. V. K. Lukyanov, D. N. Kadrev, E. V. Zemlyanaya, A. N. Antonov, K. V. Lukyanov, M. K. Gaidarov, and K. Spasova, “Microscopic analysis of 11Li elastic scattering on protons and breakup processes within the 9Li + 2n cluster model,” Phys. Rev. C 88, 034612 (2013).

    Article  ADS  Google Scholar 

  56. V. K. Lukyanov, D. N. Kadrev, E. V. Zemlyanaya, A. N. Antonov, K. V. Lukyanov, M. K. Gaidarov, and K. Spasova, “Microscopic analysis of 10,11Be elastic scattering on protons and nuclei, and breakup processes of 11Be within the 10Be + n cluster model,” Phys. Rev. C 91, 034606 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Program of Cooperation between JINR and the Arab Republic of Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Lukyanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanov, V.K., Zemlyanaya, E.V., Lukyanov, K.V. et al. Theoretical Analysis of Pion–Nucleus Scattering at Energies of the (3,3) Pion–Nucleon Resonance. Phys. Part. Nuclei 54, 734–755 (2023). https://doi.org/10.1134/S1063779623040238

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623040238

Navigation