Skip to main content
Log in

Interpretation of the XENON1T Excess in the Decaying Sterile Neutrino Model

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We consider the experimentally detected XENON1T excess of electron recoil events in the energy range from 1 to 7 keV in terms of the phenomenological model with three active and three decaying sterile neutrinos. Estimations of the decay parameters for the radiative decay of a Majorana sterile neutrino due to the magnetic dipole transitions into other neutrino states are made. The analytical expressions for the transition and surviving probabilities for different neutrino flavors are obtained with consideration of the decaying sterile neutrinos contributions, and the graphs of the dependences of these probabilities are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. E. Aprile et al. (XENON Collab.), and X. Mougeot, “Excess electronic recoil events in XENON1T,” Phys. Rev. D 102, 072004 (2020).

    Article  ADS  Google Scholar 

  2. V. V. Khruschov and S. V. Fomichev, “Sterile neutrinos influence on oscillation characteristics of active neutrinos at short distances in the generalized model of neutrino mixing,” Int. J. Mod. Phys. A 34, 1950175 (2019).

    Article  ADS  Google Scholar 

  3. S. Gariazzo, C. Giunti, M. Laveder, and Y. F. Li, “Updated global 3+1 analysis of short-baseline neutrino oscillations,” J. High Energy Phys. 1706, 135 (2017).

    Article  ADS  Google Scholar 

  4. V. V. Khruschov, “Interpretation of the XENON1T excess in the model with decaying sterile neutrinos,” arXiv: 2008.03150v2 hep-ph.

  5. V. V. Khruschov, S. V. Fomichev, and O. A. Titov, “Oscillation properties of active and sterile neutrinos and neutrino anomalies at short distances” Phys. At. Nucl. 79, 708–720 (2016).

    Article  Google Scholar 

  6. N. Yu. Zysina, S. V. Fomichev, and V. V. Khruschov, “Mass properties of active and sterile neutrinos in a phenomenological (3 + 1 + 2) model,” Phys. At. Nucl. 77, 890–900 (2014).

    Article  Google Scholar 

  7. A. V. Yudin, D. K. Nadyozhin, V. V. Khruschov, and S. V. Fomichev, “Neutrino fluxes from a core-collapse supernova in a model with three sterile neutrinos,” Astron. Lett. 42, 800–814 (2016).

    Article  ADS  Google Scholar 

  8. P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle, “2020 global reassessment of the neutrino oscillation picture,” J. High Energy Phys. 2102, 071 (2021).

  9. S. Vergani, N. W. Kamp, A. Diaz, C. A. Argüelles, J. M. Conrad, M. H. Shaevitz, and M. A. Uchida, “Explaining the MiniBooNE excess through a mixed model of oscillation and decay,” arXiv:2105.06470v5 hep-ph.

  10. A. Schneider, “Constraining noncold dark matter models with the global 21-cm signal,” Phys. Rev. D 98, 063021 (2018).

    Article  ADS  Google Scholar 

  11. P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo, and A. Ringwald, “WISPy cold dark matter,” J. Cosmol. Astropart. Phys. 1206, 013 (2012).

  12. R. Brito, S. Grilo, and P. Pani, “Black hole superradiant instability from ultralight spin-2 fields,” Phys. Rev. Lett. 124, 211101 (2020).

    Article  ADS  Google Scholar 

  13. P. B. Pal and L. Wolfenstein, “Radiative decays of massive neutrinos,” Phys. Rev. D 25, 766–773 (1982).

    Article  ADS  Google Scholar 

  14. S. Palomares-Ruiz, S. Pascoli, and T. Schwetz, “Explaining LSND by a decaying sterile neutrino,” J. High Energy Phys. 0509, 048 (2005).

  15. M. Masip, P. Masjuan, and D. Meloni, “Heavy neutrino decays at MiniBooNE,” J. High Energy Phys. 1301, 106 (2013).

    Article  ADS  Google Scholar 

  16. G. Magill, R. Plestid, M. Pospelov, and Y.-D. Tsai, “Dipole portal to heavy neutral leptons,” Phys. Rev. D 98, 115015 (2018).

    Article  ADS  Google Scholar 

  17. C. Giunti and A. Studenikin, “Neutrino electromagnetic interactions: A window to new physics,” Rev. Mod. Phys. 87, 531-591 (2015).

    Article  MathSciNet  ADS  Google Scholar 

  18. S. M. Bilenky, “Some comments on high-precision study of neutrino oscillations,” Phys. Part. Nucl. Lett. 12, 453–461 (2015).

    Article  Google Scholar 

  19. V. Kopeikin, M. Skorokhvatov, and O. Titov, “Reevaluating reactor antineutrino spectra with new measurements of the ratio between 235U and 239Pu β spectra,” arXiv:2103.01684 nucl-ex.

  20. V. I. Lyashuk, “Problem of reactor antineutrino spectrum errors and its alternative solution in the regulated spectrum scheme,” Results Phys. 7, 1212–1213 (2017).

    Article  ADS  Google Scholar 

  21. V. N. Gavrin, V. V. Gorbachev, T. V. Ibragimova, V. N. Kornoukhov, A. A. Dzhanelidze, S. B. Zlokazov, N. A. Kotelnikov, A. L. Izhutov, S. V. Mainskov, V. V. Pimenov, V. P. Borisenko, K. B. Kiselev, and M. P. Tsevelev, “Neutrino-oscillation searches in the short-baseline gallium experiment BEST-2 with a 65Zn source,” Phys. At. Nucl. 82, 70—76 (2019).

    Article  Google Scholar 

  22. C. Giunti, M. Laveder, Y. F. Li, and H. W. Long, “Pragmatic view of short-baseline neutrino oscillations,” Phys. Rev. D 88, 073008 (2013).

    Article  ADS  Google Scholar 

  23. V. V. Barinov et al. (BEST collab.), “Results from the Baksan experiment on sterile transitions (BEST),” arXiv: 2109.11482 nucl-ex.

  24. D. S. Akerib, C. W. Akerlof, D. Yu. Akimov, et al., “The LUX-ZEPLIN (LZ) experiment,” Nucl. Inst. Methods Phys. Res., Sect. A 953, 163047 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Khruschov.

Additional information

Translated by E. Smirnova

Report at the LXXI International Conference “Nucleus—2021. Nuclear Physics and Physics of Elementary Particles. Nuclear-Physical Technologies” (St. Petersburg, Russia, September 20–25, 2021).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khruschov, V.V., Fomichev, S.V. Interpretation of the XENON1T Excess in the Decaying Sterile Neutrino Model. Phys. Part. Nuclei 54, 373–379 (2023). https://doi.org/10.1134/S1063779623030176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623030176

Navigation