Skip to main content
Log in

Magnetism in Ferromagnetic-Superconducting Layered Structures

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The review presents the results of studies by neutrons of the magnetism phenomena in ferromagnetic-superconducting inhomogeneous structures carried out by the authors over fifteen years. The presence of superparamagnetic clusters, ferromagnetic domains, and superconducting vortices in real inhomogeneous layered structures leads to new magnetic phenomena. Reflectometry of polarized neutrons, being a powerful method for studying the spatial distribution of magnetization on a spatial scale from fractions of nanometers to tens of microns, makes it possible to study the whole spectrum of magnetic phenomena that occur in ferromagnetic-superconducting structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.

Similar content being viewed by others

REFERENCES

  1. V. L. Ginzburg, “Ferromagnetic superconductors,” Zh. Eksp. Teor. Fiz. 31, 202 (1957).

    MATH  Google Scholar 

  2. P. W. Anderson and H. Suhl, “Spin alignment in the superconducting state,” Phys. Rev. 116, 898 (1959).

    Article  Google Scholar 

  3. Yu. A. Izyumov, Yu. N. Proshin, and M. G. Khusainov, “Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures,” Phys.-Usp. 45, 109–148 (2002).

    Article  Google Scholar 

  4. Th. Muhge et al., “Influence of superconductivity on magnetic properties of superconductor/ferromagnet epitaxial bilayers,” Physica C 296, 325–336 (1998).

    Article  Google Scholar 

  5. I. A. Garifullin, D. A. Tikhonov, N. N. Garif’yanov, M. Z. Fattakhov, K. Theis-Brohl, K. Westerholt, and H. Zabel, “Possible reconstruction of the ferromagnetic state under the influence of superconductivity in epitaxial V/Pd1 – xFex bilayers,” Appl. Magn. Reson. 22, 439 (2002).

    Article  Google Scholar 

  6. V. L. Aksenov, K. N. Jernenkov, Yu. N. Khaidukov, Yu. V. Nikitenko, A. V. Petrenko, V. V. Proglyado, G. Andersson, and R. Wappling, “Interplay between superconductivity and ferromagnetism in Fe/V multilayered structure studied by polarized neutron reflectometry,” Physica A 356, 9—13 (2005).

    Article  Google Scholar 

  7. V. L. Aksenov, Yu. V. Nikitenko, A. V. Petrenko, V. M. Uzdin, Yu. N. Khaidukov, and H. Zabel, “Features of the magnetic state of the layered Fe–V nanostructure of the superconductor-ferromagnet type,” Crystallogr Rep. 52, 381–386 (2007).

    Article  Google Scholar 

  8. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Odd triplet superconductivity in superconductor ferromagnet structures: A survey,” Appl. Phys. A 89, 599 (2007).

    Article  Google Scholar 

  9. E. B. Sonin, “Comment on “Domain structure in a superconducting ferromagnet,” Phys. Rev Lett 95, 269701 (2005).

    Article  Google Scholar 

  10. F. S. Bergeret and N. Garcia, “Spin screening and antiscreening in a ferromagnet/superconductor heterojunction,” Phys. Rev. B 70, 052507 (2004).

    Article  Google Scholar 

  11. E. B. Sonin, “Spontaneous vortex phase in a superconducting weak ferromagnet,” Phys. Rev. B 57, R14000(R) (1998).

  12. V. L. Aksenov and Yu. V. Nikitenko, ”Polarized neutron reflectometry at the IBR-2 pulsed reactor,” Crystallopr. Rep. 52, 540–549 (2007).

    Article  Google Scholar 

  13. Yu. V. Nikitenko and V. G. Syromyatnikov, Polarized Neutron Reflectometry (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  14. V. L. Aksenov and Yu. V. Nikitenko, “Neutron interference at grazing incidence reflection. Neutron standing waves in multilayered structures: Applications, status, perspectives,” Physica B 297, 101—112 (2001).

    Article  Google Scholar 

  15. Yu. V. Nikitenko, “Neutron standing waves in layered systems: Formation, detection, and application in neutron physics and for investigation of nanostructures,” Phys. Part. Nucl. 40, 890 (2009).

    Article  Google Scholar 

  16. V. L. Aksenov, K. N. Jernenkov, Yu. N. Khaidukov, Yu. V. Nikitenko, A. V. Petrenko, V. V. Proglyado, G. Andersson, and R. Wappling, “Interplay between superconductivity and ferromagnetism in Fe/V multilayered structure studied by polarized neutron reflectometry,” Physica B 356, 9—13 (2005).

    Article  Google Scholar 

  17. Yu. V. Nikitenko et al., “Detection of magnetic nanolattice in strucure Ta/V/Fe0.7V0.3/V/Fe0.7V0.3/Nb/Si with magnetic and superconducting layers,” Comm. Joint Inst.Nucl. Res. P14-2014-60 (2014).

  18. V. L. Aksenov, Yu. V. Nikitenko, Yu. N. Khaidukov, S. N. Vdovichev, M. M. Borisov, A. N. Morkovin, and E. Kh. Mukhamedzhanov, “Coexistence of superconductivity and ferromagnetism in the Nb(500 Å)/Fe(39 Å)/ [Si(34 Å)/Mo(34 Å)]40/Si nanostructure,” J. Surf. Investig. 3, 495–499 (2009)

    Article  Google Scholar 

  19. V. L. Aksenov, Yu. N. Khaidukov, and Yu. V. Nikitenko, “Peculiarities of magnetic states in ferromagnet/superconductor heterostructures due to the proximity effects,” J. Phys. Conf. Ser. 211, 012022 (2010).

    Article  Google Scholar 

  20. Yu. N. Khaydukov, V. L. Aksenov, Yu. V. Nikitenko, et al., “Magnetic proximity effects in V/Fe superconductor/ferromagnet single bilayer revealed by waveguide-enhanced polarized neutron reflectometry,” J. Supercond. Novel Magn. 24, 961–968 (2011).

    Article  Google Scholar 

  21. Yu. N. Khaidukov, N. S. Perov, M. M. Borisov, E. Kh. Mukhamedzhanov, A. Csik, K. N. Zhernenkov, Yu. V. Nikitenko, and V. L. Aksenov, “Structural and magnetic properties of the periodic 10x[Fe(5 nm)/ V(5 nm)] and 20xFe(3 nm)/V(3 nm)] systems,” Solid State Phenom. 190, 396–400 (2012).

    Article  Google Scholar 

  22. Yu. N. Khaidukov, D. Nagy, J.-H. Kim, T. Keller, A. Ruhm, Yu. V. Nikitenko, K. N. Zhernenkov, J. Stahn, L. F. Kiss, A. Csik, L. Bottyan, and V. L. Aksenov, “On the feasibility to study inverse proximity effect in a single S/F bilayer by polarized neutron reflectometry,” JETP Lett 98, 107–110 (2013).

    Article  Google Scholar 

  23. V. D. Zhaketov, Yu. V. Nikitenko, F. Radu, A. V. Petrenko, A. Czik, M. M. Borisov, E. Kh. Mukhamedzhanov, and V. L. Aksenov, “Magnetism in structures with ferromagnetic and superconducting layers,” J. Exp. Theor. Phys. 124, 114—130 (2017).

    Article  Google Scholar 

  24. V. D. Zhaketov, Yu. V. Nikitenko, A. V. Petrenko, F. Radu, A. Czik, and V. L. Aksenov, “Relaxation of the magnetic state of a ferromagnetic–superconducting layered structure,” J. Exp. Theor. Phys. 125, 480—494 (2017).

    Article  Google Scholar 

  25. V. D. Zhaketov, Yu. V. Nikitenko, A. V. Petrenko, S. N. Vdovichev, A. V. Churakov, and A. Czik, “Reflexivity and correlation of magnetic states of nanostructures in the Nb(70 nm)/Ni0.65Cu0.35(6.5 nm)/Si ferromagnet–superconductor heterostructure,” J. Exp. Theor. Phys. 127, 508—515 (2018).

    Article  Google Scholar 

  26. V. D. Zhaketov, Yu. V. Nikitenko, Yu. N. Khaidukov, O. V. Skryabina, A. Czik, M. M. Borisov, E. Kh. Mukhamedzhanov, S. N. Vdovichev, E. I. Litvinenko, A. V. Petrenko, and A. V. Churakov, “Magnetic and superconducting properties of inhomogeneous layered structures V/Fe0.7V0.3/V/Fe0.7V0.3/Nb and Nb/Ni0.65(0.81)Cu0.35(0.19),” J. Exp. Theor. Phys. 129, 258—276 (2019).

    Article  Google Scholar 

  27. Yu. N. Khaydukov, A. S. Vasenko, E. A. Kravtsov, V. V. Progliado, V. D. Zhaketov, A. Csik, Yu. V. Nikitenko, A. V. Petrenko, T. Keller, A. A. Golubov, M. Yu. Kupriyanov, V. V. Ustinov, V. L. Aksenov, and B. Keimer, “Magnetic and superconducting phase diagram of Nb/Gd/Nb trilayers,” Phys. Rev. B 97, 144511 (2018).

    Article  Google Scholar 

  28. Yu. N. Khaydukov, E. A. Kravtsov, V. D. Zhaketov, V. V. Progliado, G. Kim, Yu. V. Nikitenko, T. Keller, V. V. Ustinov, V. L. Aksenov, and B. Keimer, “Magnetic proximity effect in Nb/Gd superlattices seen by neutron reflectometry,” Phys. Rev. B 99, 140503(R) (2019).

  29. Yu. Khaydukov, V. Zhaketov, Yu. Nikitenko, V. Aksenov, et al., “Neutron reflectometry studies of Gd/Nb and Cu30Ni70/Nb superlattices,” J. Phys. Conf. Ser. 1389, 012060 (2019).

    Article  Google Scholar 

  30. F. L. Shapiro, Neutron Studies (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  31. V. L. Aksenov and Yu. V. Nikitenko, “Scientific reviews: Polarized neutron reflectometry at IBR-2,” Neutron News 16, 19 (2005).

    Article  Google Scholar 

  32. Yu. N. Khaidukov and Yu. V. Nikitenko, “Magnetic non-collinear neutron wave resonator,” Nucl. Instrum. Methods Phys. Res., Sect. A 629, 245 (2011).

    Google Scholar 

  33. Yu. V. Nikitenko, “Magnetic neutron-wave resonator,” J. Synch. Investig. 6, 805–816 (2012).

    Article  Google Scholar 

  34. S. V. Maleyev, “Polarized neutron scattering in magnets,” Phys. Usp. 45, 569–596 (2002).

    Article  Google Scholar 

  35. Yu. V. Nikitenko, A. V. Petrenko, N. A. Gundorin, Yu. M. Gledenov, and V. L. Aksenov, “Isotope identifying neutron reflectometry,” Crystallogr. Rep. 60, 466–479 (2015).

    Article  Google Scholar 

  36. V. D. Zhaketov, A. V. Petrenko, S. N. Vdovichev, V. V. Travkin, A. Czik, Yu. N. Kopach, Yu. M. Gledenov, E. Sansarbayar, N. A. Gundorin, Yu. V. Nikitenko, and V. L. Aksenov, “Grazing-incidence neutron spectrometer detecting neutrons and charged particles,” J. Synch. Investig. 13, 478–487 (2019).

    Article  Google Scholar 

  37. V. D. Zhaketov, K. Khramko, A. V. Petrenko, Yu. N. Khaidukov, A. Czik, Yu. N. Kopach, N. A. Gundorin, Yu. V. Nikitenko, and V. L. Aksenov, “Polarized-neutron reflectometer detecting neutrons and gamma-quanta,” Poverkhost. Rent. Synchr. Neutron. Issled. 6, 10–24 (2021).

    Google Scholar 

  38. V. L. Aksenov, Yu. V. Nikitenko, F. Radu, Yu. M. Gledenov, and P. V. Sedyshev, “Observation of resonance enhanced neutron standing waves through (n, α) reaction,” Physica B 276–278, 946—947 (2000).

  39. G. Beaucage, “Approximations leading to a unified exponential/power-law approach to small-angle scattering,” J. Appl. Crystallogr. 28, 717 (1995).

    Article  Google Scholar 

  40. G. Beaucage, H. K. Kammler, and S. E. Pratsinis, “Particle size distributions from small-angle scattering using global scattering functions,” J. Appl. Crystallogr. 37, 523 (2004).

    Article  Google Scholar 

  41. C. M. Sorensen and G. C. Roberts, “The prefactor of fractal aggregates,” J. Colloid Interface Sci. 186, 447 (1997).

    Article  Google Scholar 

  42. M. Knobel et al., “Superparamagnetism and other magnetic features in granular materials: A review on ideal and real systems,” J. Nanosci. Nanotech. 8, 2836–2857 (2008).

    Article  Google Scholar 

  43. S. Sahoo et al., “Magnetic relaxation phenomena in the superspin-glass system [Co80Fe20/Al2O3]10,” J. Phys.: Condens. Matter 14, 6729–6736 (2002).

    Google Scholar 

  44. W. Kleemann et al., “Interacting ferromagnetic nanoparticles in discontinuous Co80Fe20/Al2O3 multilayers: From superspin glass to reentrant superferromagnetism,” Phys. Rev. B 63, 134423 (2001).

    Article  Google Scholar 

  45. S. Sahoo et al., “Magnetic states of discontinuous Co80Fe20–Al2O3 multilayers,” J. Magn. Magn. Mater. 240, 433–435 (2002).

    Article  Google Scholar 

  46. E. P. Wohltarth, “The magnetic field dependence of the susceptibility peak of some spin glass materials,” J. Phys. 10, 241 (1980).

    Google Scholar 

  47. L. E. Wenger and J. D. Mydosh, “Nonuniqueness of \({{H}^{{\frac{2}{3}}}}\) and H 2 field-temperature transition lines in spin-glasses,” Phys. Rev. B 29, 4156 (1984).

    Article  Google Scholar 

  48. C. G. Robbins, H. Claus, and P. A. Beck, “Magnetism in Ni–Cu alloys,” Phys. Rev. Lett. 22, 1307 (1969).

    Article  Google Scholar 

  49. R. Prozorov, Y. Yeshurun, T. Prozorov, and A. Gedanken, “Magnetic irreversibility and relaxation in assembly of ferromagnetic nanoparticles,” Phys. Rev. B 59, 6956 (1999).

    Article  Google Scholar 

  50. C. Monton, F. de la Cruz, and J. Guimpel, “Magnetic behavior of superconductor/ferromagnet superlattices,” Phys. Rev. B 75, 064508 (2007).

    Article  Google Scholar 

  51. S. W. Han, J. Farmer, H. Kaiser, et al., “Orientation of vortices in a superconducting thin film: Quantitative comparison of spin-polarized neutron reflectivity and magnetization,” Phys. Rev. B 62, 9784 (2000).

    Article  Google Scholar 

  52. A. E. Koshelev and A. I. Larkin, “Paramagnetic moment in field-cooled superconducting plates: Paramagnetic Meissner effect,” Phys. Rev. B 52, 13559 (1995).

    Article  Google Scholar 

  53. S. V. Mironov, A. S. Mel’nikov, and A. I. Buzdin, “Electromagnetic proximity effect in planar superconductor-ferromagnet structures,” Appl. Phys. Lett. 113, 022601 (2018).

    Article  Google Scholar 

  54. B. T. Matthias and H. Suhl, “Possible explanation of the “coexistence” of ferromagnetism and superconductivity," Phys. Rev. Lett. 4, 51 (1960).

    Article  Google Scholar 

  55. Yu. V. Kopaev, “Possible existence of superconductivity in ferromagnetic materials with a domain structure,” Fiz. Tverd. Tela 7, 2907 (1965).

    Google Scholar 

  56. M. Tachiki, A. Kotani, H. Matsumoto, and U. Umezawa, “Superconducting Bloch-wall in ferromagnetic superconductors,” Sol. State Comm. 32, 599 (1979).

    Article  Google Scholar 

  57. A. I. Buzdin, L. N. Bulaevskii, and S. V. Panyukov, “Existence of superconducting domain walls in ferromagnets,” J. Exp. Theor. Phys. 60, 174 (1984).

    Google Scholar 

  58. Aladyshkin et al., “Domain-wall superconductivity in hybrid superconductor-ferromagnet structures,” Phys. Rev. B 68, 184508 (2003).

    Article  Google Scholar 

  59. A. I. Buzdin and A. S. Melnikov, “Domain wall superconductivity in ferromagnetic superconductors,” Phys. Rev. B 67, R020503 (2003).

    Article  Google Scholar 

  60. A. F. Volkov and K. B. Efetov, “Odd triplet superconductivity in a superconductor/ferromagnet structure with a narrow domain wall,” Phys. Rev. B 78, 024519 (2008).

    Article  Google Scholar 

  61. A. Y. Rusanov, M. Hesselberth, J. Aarts, and A. I. Buzdin, “Enhancement of the superconducting transition temperature in Nb/permalloy bilayers by controlling the domain state of the ferromagnet,” Phys. Rev. Lett. 93, 057002 (2004).

    Article  Google Scholar 

  62. D. Stamopoulos and M. Pissas, “Manipulating superconductivity through the domain structure of a ferromagnet: Experimental aspects and theoretical implications,” Phys. Rev. B 73, 132502 (2006).

    Article  Google Scholar 

  63. J. Aarts et al., “Interface transparency of superconductor/ferromagnetic multilayers,” Phys. Rev. B 56, 2779 (1997).

    Article  Google Scholar 

  64. P. Granberg, P. Isberg, E. B. Svedberg, et al., “Antiferromagnetic coupling and giant magnetoresistance in Fe/V(0 0 1) superlattices,” J. Magn. Magn. Mater. 186, 154 (1998).

    Article  Google Scholar 

  65. Yu. N. Khaidukov, N. S. Perov, M. M. Borisov, et al., “Structural and magnetic properties of the periodic [Fe(5 nm)/V(5 nm)]10 and [Fe (3 nm)/V(3 nm)]20 systems,” Solid State Phenom. 190, 396 (2012).

    Article  Google Scholar 

  66. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Long-range proximity effects in superconductor-ferromagnet structures,” Phys. Rev. Lett. 86, 4096 (2001).

    Article  Google Scholar 

  67. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures,” Rev. Mod. Phys. 77, 1321 (2005).

    Article  Google Scholar 

  68. M. Eschrig and T. Lofwander, “Triplet supercurrents in clean and disordered half-metallic ferromagnets,” Nat. Phys. 4, 138 (2008).

    Article  Google Scholar 

  69. A. F. Volkov, F. S. Bergeret, and K. B. Efetov, “Odd triplet superconductivity in superconductor-ferromagnet multilayered structures,” Phys. Rev. Lett. 90, 117006 (2003).

    Article  Google Scholar 

  70. G. Novak, H. Zabel, et al., “Superconducting spin valves based on epitaxial Fe/V superlattices,” Phys. Rev. B 78, 134520 (2008).

    Article  Google Scholar 

  71. Yu. Karminskaya, M. Yu. Kupriyanov, and A. A. Golubov, “Critical current in S-FNF-S Josephson structures with the noncollinear magnetization vectors of ferromagnetic films,” JETP Lett 87, 570–576 (2008).

    Article  Google Scholar 

  72. Yu. N. Khaydukov, G. A. Ovsyannikov, A. E. Sheyerman, K. Y. Constantinian, L. Mustafa, T. Keller, M. A. Uribe-Laverde, Yu. V. Koslinskii, A. V. Shadrin, A. Kalabukhov, B. Keimer, and D. Winkler, “Evidence for spin-triplet superconducting correlations in metal-oxide heterostructures with noncollinear magnetization,” Phys. Rev. B 90, 035130 (2014).

    Article  Google Scholar 

  73. T. Lofwander, T. Champel, J. Durst, and M. Eschring, “Interplay of magnetic and superconducting proximity effects in ferromagnet-superconductor-ferromagnet trilayers,” Phys. Rev. Lett. 95, 187003 (2005).

    Article  Google Scholar 

  74. A. V. Putilov, S. V. Mironov, A. S. Mel’nikov, and A. I. Buzdin, “Giant electromagnetic proximity effect in superconductor/ferromagnet superlattices,” Phys. Rev. B 105, 064510 (2022).

    Article  Google Scholar 

  75. N. Ya. Fogel, E. I. Buchstab, A. S. Pokhila, et al., “Disorder and superconductivity in Mo/Si multilayers,” Phys. Rev. B 53, 71 (1996).

    Article  Google Scholar 

  76. H. Nakajima, M. Ikebe, Y. Muto, and H. Fujimori, “Superconducting properties of Mo/Si multilayer films,” J. Appl. Phys. 65, 1637 (1989).

    Article  Google Scholar 

  77. Yu. N. Khaydukov, V. L. Aksenov, Yu. V. Nikitenko, et al., “Magnetic proximity effects in V/Fe superconductor/ferromagnet single bilayer revealed by waveguide-enhanced polarized neutron reflectometry,” J. Supercond. Novel Magn, 24, 961 (2011).

    Article  Google Scholar 

  78. H. K. Wong et al., “Superconducting properties of Fe/V/Fe sandwiches,” J. Low Temp. Phys. 63, 307 (1986).

    Article  Google Scholar 

  79. P. Koorevar et al., “Decoupling of superconducting V by ultrathin Fe layers in V/Fe multilayers,” Phys. Rev. B 49, 441 (1994).

    Article  Google Scholar 

  80. C. Strunk et al., “Superconductivity in layered Nb/Gd films,” Phys. Rev. B 49, 4053 (1994).

    Article  Google Scholar 

  81. J. S. Jiang et al., “Oscillatory superconducting transition temperature in Nb/Gd multilayers,” Phys. Rev. Lett. 74, 314 (1995).

    Article  Google Scholar 

  82. Yu. N. Khaydukov, A. S. Vasenko, E. A. Kravtsov, V. V. Progliado, V. D. Zhaketov, A. Csik, Yu. V. Nikitenko, A. V. Petrenko, T. Keller, A. A. Golubov, M. Yu. Kupriyanov, V. V. Ustinov, V. L. Aksenov, and B. Keimer, “Magnetic and superconducting phase diagram of Nb/Gd/Nb trilayers,” Phys. Rev. B 97, 144511 (2018).

    Article  Google Scholar 

  83. J. S. Jiang, D. Davidovič, D. H. Reich, and C. L. Chien, “Superconducting transition in Nb/Gd/Nb trilayers,” Phys. Rev. B 54, 6119 (1996).

    Article  Google Scholar 

  84. Yu. N. Proshin and M. G. Khusainov, “Manifestations of the Larkin–Ovchinnikov–Fulde–Ferrell state in bimetal ferromagnet-superconductor structures,” JETP Lett. 66, 562–568 (1997).

    Article  Google Scholar 

  85. M. G. Khusainov and Yu. N. Proshin, “Possibility of periodically reentrant superconductivity in ferromagnet/superconductor layered structures,” Phys. Rev. B 56, 14283 (1997).

    Article  Google Scholar 

  86. Yu. N. Proshin and M. G. Khusainov, “Nonmonotonic behavior of the superconducting transition temperature in bimetallic ferromagnet-superconductor structures,” J. Exp. Theor. Phys. 86, 930–942 (1998).

    Article  Google Scholar 

  87. Yu. A. Izyumov, Yu. N. Proshin, and M. G. Khusainov, “Multicritical behavior of the phase diagrams of ferromagnet/superconductor layered structures,” JETP Lett. 71, 138—143 (2000).

    Article  Google Scholar 

  88. M. G. Khusainov, Yu. A. Izyumov, and Yu. N. Proshin, “Origin of nonmonotonic T c behavior in ferromagnet/superconductor structures,” Physica B 284–288, 503 (2000).

  89. Th. Muhge et al., “Possible origin for oscillatory superconducting transition temperature in superconductor/ferromagnet multilayers,” Phys. Rev. Lett. 77, 1857 (1996).

    Article  Google Scholar 

  90. B. Nagy, Yu. Khaydukov, D. Efremov, A. S. Vasenko, L. Mustafa, J.-H. Kim, T. Keller, K. Zhernenkov, A. Devishvili, R. Steitz, B. Keimer, L. Botty’an, “On the explanation of the paramagnetic Meissner effect in superconductor/ferromagnet heterostructures,” Europhys. Lett. 116, 17005 (2016).

    Article  Google Scholar 

  91. A. I. Buzdin, “Proximity effects in superconductor-ferromagnet heterostructures,” Rev. Mod. Phys. 77, 935 (2005).

    Article  Google Scholar 

  92. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Odd triplet superconductivity and related phenomena in superconductor-ferromagnet structures,” Rev. Mod. Phys. 77, 1321 (2005).

    Article  Google Scholar 

  93. M. Esching, “The effect of collective spin-1 excitations on electronic spectra in high-T c superconductors,” Adv. Phys. 55, 47 (2006).

    Article  Google Scholar 

  94. A. A. Golubov and M. Yu. Kupriyanov, and E. Il’ichev, “The current-phase relation in Josephson junctions,” Rev. Mod. Phys. 76, 411 (2004).

    Article  Google Scholar 

  95. A. I. Buzdin, B. Bujicic, and M. Yu. Kupriyanov, “Superconductor-ferromagnet structures,” Sov. Phys. JETP 74, 124 (1992).

    Google Scholar 

  96. A. I. Buzdin and M. Yu. Kupriyanov, “Transition temperature of a superconductor-ferromagnet superlattice,” JETP Lett 52, 487–491 (1990).

    Google Scholar 

  97. V. N. Krivoruchko and E. A. Koshina, “Inhomogeneous magnetism induced in a superconductor at a superconductor-ferromagnet interface,” Phys. Rev. B 66, 014521 (2002).

    Article  Google Scholar 

  98. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Manifestation of triplet superconductivity in superconductor-ferromagnet structures,” Phys. Rev. B 68, 064513 (2003).

    Article  Google Scholar 

  99. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Induced ferromagnetism due to superconductivity in superconductor-ferromagnet structures,” Phys. Rev. B 69, 174504 (2004).

    Article  Google Scholar 

  100. F. S. Bergeret, A. F. Volkov, and K. B. Efetov, “Spin screening of magnetic moments in superconductors,” Europhys. Lett. 66, 111 (2004).

    Article  Google Scholar 

  101. F. S. Bergeret, A. Levy Yeyati, and A. Martin-Rodero, “Inverse proximity effect in superconductor-ferromagnet structures: From the ballistic to the diffusive limit,” Phys. Rev. B 72, 064524 (2005).

    Article  Google Scholar 

  102. M. Yu. Kharitonov, A. F. Volkov, and K. B. Efetov, “Oscillations of induced magnetization in superconductor-ferromagnet heterostructures,” Phys. Rev. B 73, 054511 (2006).

    Article  Google Scholar 

  103. A. F. Volkov, F. S. Bergeret, and K. B. Efetov, “Spin polarization and orbital effects in superconductor-ferromagnet structures,” Phys. Rev. B 99, 144506 (2019).

    Article  Google Scholar 

  104. R. Werner, A. Yu. Aladyshkin, S. Guenon, J. Fritzsche, I. M. Nefedov, V. V. Moshchalkov, R. Kleiner, and D. Koelle, “Domain-wall and reverse-domain superconducting states of a Pb thin-film bridge on a ferromagnetic BaFe12O19 single crystal,” Phys. Rev. B 84, 020505 (2011).

    Article  Google Scholar 

  105. S. M. Dahir, A. F. Volkov, and I. M. Eremin, “Meissner currents induced by topological magnetic textures in hybrid superconductor/ferromagnet structures,” Phys. Rev. B 102, 014503 (2020).

    Article  Google Scholar 

  106. A. P. Petrovic, M. Raju, X. Y. Tee, A. Louat, I. Maggio-Aprile, R. M. Menezes, M. J. Wyszynski, N. K. Duong, M. Reznikov, Ch. Renner, M. V. Milisevic, and C. Panagopoulos, “Skyrmion-(anti)vortex coupling in a chiral magnet-superconductor heterostructure,” Phys. Rev. Lett. 126, 117205 (2021).

    Article  Google Scholar 

  107. Zh. Devizorova, S. V. Mironov, A. S. Mel’nikov, and A. Buzdin, “Electromagnetic proximity effect controlled by spin-triplet correlations in superconducting spin-valve structures” Phys. Rev. B 99, 104519 (2019).

    Article  Google Scholar 

  108. S. V. Mironov, A. V. Samokhvalov, A. I. Buzdin, and A. S. Mel’nikov, “Electromagnetic proximity effect and the Fulde–Ferrell–Larkin–Ovchinnikov instability in hybrid superconductor-ferromagnet structures (brief review),” JETP Lett 113, 92 (2021).

    Article  Google Scholar 

  109. M. G. Flokstra, R. Stewart, N. Satchell, G. Burnell, H. Luetkens, T. Prokscha, A. Suter, E. Morenzoni, S. Langridze, and S. L. Lee, “Manifestation of the electromagnetic proximity effect in superconductor-ferromagnet thin film structures,” Appl. Phys. Lett. 115, 072602 (2019).

    Article  Google Scholar 

  110. R. Stewart, M. G. Flokstra, M. Rogers, N. Satchell, G. Burnell, D. Miller, H. Luetkens, T. Prokscha, A. Suter, E. Morenzoni, and S. L. Lee, “Controlling the electromagnetic proximity effect by tuning the mixing between superconducting and ferromagnetic order,” Phys. Rev. B 100, 020505 (2019).

    Article  Google Scholar 

  111. T. G. Walker and H. Hopster, “Induced magnetic order in ultrathin vanadium films on Fe(100),” Phys. Rev. B 49, 7687 (1994).

    Article  Google Scholar 

  112. K. Vad, A. Csik, and G. A. Langer, “Secondary neutral mass spectrometry—a powerful technique for quantitative elemental and depth profiling analyses of nanostructures,” Spectrosc. Eur. 21, 13 (2009).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.L. Aksenov, A.V. Petrenko, and Yu.N. Khaidukov for participation in the experiments and discussion of the research results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Zhaketov.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitenko, Y.V., Zhaketov, V.D. Magnetism in Ferromagnetic-Superconducting Layered Structures. Phys. Part. Nuclei 53, 1089–1125 (2022). https://doi.org/10.1134/S1063779622060065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622060065

Navigation